Initial Study/Negative Declaration
for
North Valley Fire Station No. 7
W.O. # E170093B

October 17, 2011

City of Los Angeles
Bureau of Engineering
Environmental Management Group
LEAD CITY AGENCY AND ADDRESS:
Department of Public Works, Bureau of Engineering
1149 Broadway, Suite 600, Los Angeles 90015

COUNCIL DISTRICT
7

PROJECT TITLE: North Valley Fire Station 7 (W.O. E170093B)

T.G.

501-J6

PROJECT LOCATION:
The proposed project is located on several vacant parcels located west of Van Nuys Boulevard at 14630-14666 Plummer Street in the Mission Hills-Panorama City North Hills Community Plan Area.

DESCRIPTION:
Project Description: The City of Los Angeles (City) is proposing to construct a replacement fire station at 14630-14666 West Plummer Street in community of Panorama City. The existing Los Angeles City Fire Station No. 7 located at 14123 Nordhoff Street (approximately one mile away) cannot house the additional resources needed to meet present and future demands for fire protection services. Prior to construction, the City would acquire the property under consideration. The proposed project will use accrued interest and savings from Proposition F, approved by voters on November 7, 2000. The replacement fire station will include an approximate 15,500 square-foot facility and other associated improvements. Disposition of the existing Fire Station No. 7 at 14123 W. Nordhoff Street has not been determined at this time. Until such a determination is made, the Department of General Services would maintain the buildings.

NAME AND ADDRESS OF APPLICANT IF OTHER THAN CITY AGENCY:

FINDING: The City Engineer of the City of Los Angeles has determined the proposed project could not have a significant effect on the environment. See attached Initial Study.

SEE THE ATTACHED PAGES FOR ANY MITIGATION MEASURES IMPOSED
Any written objections received during the public review period are attached, together with the responses of the lead City agency.

THE INITIAL STUDY PREPARED FOR THIS PROJECT IS ATTACHED

PERSON PREPARING THIS FORM ADDRESS TELEPHONE NUMBER
Catalina Hernandez 1149 S. Broadway, Suite 600, MS 939 (213) 485-5756
Environmental Specialist II Los Angeles, CA 90015

SIGNATURE (Official) DATE
Jim Doty, Acting Manager 10-20-11
Environmental Management Group
TABLE OF CONTENTS

I. INTRODUCTION ...5
 A. Purpose of an Initial Study ...5
 B. Document Format ..6
 C. CEQA Process ...6

II. PROJECT DESCRIPTION ..7
 Location ...7
 Purpose ...8
 Need ...8
 Description ...15

III. EXISTING ENVIRONMENT ..17
 CONSISTENCY WITH LAND USE PLANS AND ZONING ...19
 Land Use Plans ..19
 Zoning ...19
 CULTURAL RESOURCES ..20
 TRAFFIC AND CIRCULATION ..20
 Existing Setting ..20

IV. ENVIRONMENTAL EFFECTS – INITIAL STUDY CHECKLIST24

V. ENVIRONMENTAL IMPACT EVALUATION ...56

VI. MITIGATION MEASURES ...56

VII. PREPARATION AND COORDINATION/CONSULTATION56
 A. Prepared by: ..56
 B. Coordination/consultation with: ...57

VIII. DETERMINATION-RECOMMENDED ENVIRONMENTAL DOCUMENTATION ...58
 A. Summary ..58
 B. Recommended Environmental Documentation ...59

Prepared By: ..59
Reviewed By: ..59
Approved By: ..59

REFERENCES: ...60
LIST OF FIGURES

Figure 1 - Regional Location Map ... 9
Figure 2 - Project Location Aerial View .. 11
Figure 3 - Vicinity Map: Relationship to Existing F.S. #7 ... 13
Figure 4 - Existing Proposed Project Site ... 18
Figure 5 - Generalized Zoning Map - Proposed Project Site and Environs 19
Figure 6 - Study Area Peak Hour Traffic Volumes .. 22

APPENDICES

Appendix A – Air Quality Report
Appendix B – Traffic Report
I. INTRODUCTION

A. Purpose of an Initial Study

The California Environmental Quality Act (CEQA) was enacted in 1970 for the purpose of providing decision-makers and the public with information regarding environmental effects of proposed projects; identifying means of avoiding environmental damage; and disclosing to the public the reasons behind a project’s approval even if it leads to environmental damage. The Bureau of Engineering Environmental Management Group (EMG) has determined the proposed project is subject to CEQA and no exemptions apply. Therefore, the preparation of an initial study is required.

An initial study is a preliminary analysis conducted by the lead agency, in consultation with other agencies (responsible or trustee agencies, as applicable), to determine whether there is substantial evidence that a project may have a significant effect on the environment. If the initial study concludes that the project, with mitigation, may have a significant effect on the environment, an environmental impact report should be prepared; otherwise the lead agency may adopt a negative declaration or mitigated negative declaration.

The Negative Declaration (ND) and Initial Study (IS) contained herein have been prepared in accordance with CEQA (Public Resources Code §21000 et seq.), the State CEQA Guidelines (Title 14, California Code of Regulations, §15000 et seq.), and the City of Los Angeles CEQA Guidelines (1981, amended July 31, 2002).
B. Document Format

This ND is organized into eight sections as follows:

Section I, Introduction: provides an overview of the project and the CEQA environmental documentation process.

Section II, Project Description: provides a description of the project location, project background, and project components.

Section III, Existing Environment: provides a description of the existing environmental setting with focus on features of the environment which could potentially affect the proposed project or be affected by the proposed project.

Section IV, Environmental Effects/Initial Study Checklist: presents the City’s Checklist for all impact areas and mandatory findings of significance. Includes discussion and identifies applicable mitigation measures.

Section V, Mitigation Measures: provides the mitigation measures that would be implemented to ensure that potential adverse impacts of the proposed project would be reduced to a less than significant level.

Section VI, Preparation and Consultation: provides a list of key personnel involved in the preparation of this report and key personnel consulted.

Section VII, Determination – Recommended Environmental Documentation: provides the recommended environmental documentation for the proposed project; and,

Section VIII, References: provides a list of reference materials used during the preparation of this report.

C. CEQA Process

Once the adoption of a negative declaration (or mitigated negative declaration) has been proposed, a public comment period opens for no less than twenty (20) days or thirty (30) days if there is state agency involvement. The purpose of this comment period is to provide public agencies and the general public an opportunity to review the initial study and comment on the adequacy of the analysis and the findings of the lead agency regarding potential environmental impacts of the proposed project. If a reviewer believes the project may have a significant effect on the environment, the reviewer should (1) identify the specific effect, (2) explain why it is believed the effect would occur, and (3) explain why it is believed the effect would be significant. Facts or expert opinion supported by facts should be provided as the basis of such comments.
After the close of the public review period, the Board of Public Works considers the negative declaration or mitigated negative declaration, together with any comments received during the public review process, and makes a recommendation to the City Council on whether or not to approve the project. One or more Council committees may then review the proposal and documents and make its own recommendation to the full City Council. The City Council is the decision-making body and also considers the negative declaration or mitigated negative declaration, together with any comments received during the public review process, in the final decision to approve or disapprove the project. During the project approval process, persons and/or agencies may address either the Board of Public Works or the City Council regarding the project. Public notification of agenda items for the Board of Public Works, Council committees and City Council is posted 72 hours prior to the public meeting. The Council agenda can be obtained by visiting the Council and Public Services Division of the Office of the City Clerk at City Hall, 200 North Spring Street, Suite 395; by calling 213/978-1047, 213/978-1048 or TDD/TTY 213/978-1055; or via the internet at http://www.lacity.org/CLK/index.htm.

If the project is approved, the City will file a notice of determination with the County Clerk within 5 days. The notice of determination will be posted by the County Clerk within 24 hours of receipt. This begins a 30-day statute of limitations on legal challenges to the approval under CEQA. The ability to challenge the approval in court may be limited to those persons who objected to the approval of the project, and to issues which were presented to the lead agency by any person, either orally or in writing, during the public comment period.

As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability and, upon request, will provide reasonable accommodation to ensure equal access to its programs, services, and activities.

II. PROJECT DESCRIPTION

Location

The proposed project would be located on several currently vacant parcels of land located west of Van Nuys Boulevard at 14630-14666 Plummer Street in the Mission Hills-Panorama City North Hills Community Plan Area. Figure 1, which follows, shows the proposed project site’s relationship to the Region while Figure 2 is a Location Map and Figure 3 is a Vicinity Map that shows the relationship of the proposed project to the existing Fire Station #7.
Purpose

The proposed project would replace the existing Arleta Fire Station No.7, which is located at 14123 Nordhoff Street (approximately one mile away) with a new Standard Fire/Paramedic Station on five contiguous vacant parcels situated at 14630 to 14666 West Plummer Street. The existing fire station was built in the 1950's and is approximately 2,355 sq. ft. situated on a 25,658 sq. ft. lot. The existing facility does not meet current design or functional standards for a “standard type” fire station. It is overcrowded, its main systems are antiquated and the current site is too small to accommodate a replacement fire station or retrofit of the existing one. The new facility would include a two-story, state of the art, 15,500 SF building sited on a 1.9 acre lot (5 parcels). The new station would include three heavy and three light apparatus bays.

Need

In 1998, the City of Los Angeles completed a Public Safety Facilities Master plan study. This study determined that most of the City’s existing Fire Stations were too small to adequately house the equipment and personnel needed for efficient deployment of resources. Moreover, most of the stations failed to meet current Building and Safety Codes, particularly seismic design requirements. In order to mitigate and partially remedy these issues, Proposition F was placed on the ballot and approved by Los Angeles voters on November 7, 2000. Proposition F authorized the issuance of $532.6 million in General Obligation Bonds to finance the construction and rehabilitation of Fire Stations and Animal Shelters throughout the City of Los Angeles. Of the $532.6 million authorization, approved by the voters, $378.6 million was allocated to build 19 neighborhood Fire/Paramedic Stations and an Emergency Air Operations/Helicopter Maintenance Facility.

Nineteen (19) projects have been completed. The remaining original project, Hollywood Fire Station No. 82 (FS 82), is currently in construction. Upon construction contract award of FS 82, the Bureau of Engineering reported a Prop F savings that could be used for construction of a new fire station. In April 2009 and September 2009 respectively, the Mayor and City Council approved two new projects using accrued interest and project savings. The proposed Fire Station No. 7 is one of the two added projects that will replace the existing Fire Station 7 with a new Standard Fire/Paramedic Station.
Figure 1 – Regional Location Map

North Valley FS 7
Left Intentionally Blank
Figure 2: Project Location Map
Left Intentionally Blank
Figure 3 - Vicinity Map: Relationship to Existing F.S. #7
Description

The existing 2,355 sq. ft. main building and 960 sq. ft. apparatus building at Fire Station No. 7 would be replaced with a new consolidated structure at the new location. The new replacement Fire Station No. 7 would include a two-story, state of the art, 15,500 SF building sited on a 1.9 acre vacant site located at 14630 to 14660 West Plummer Street. The proposed project site is currently zoned RD-1.5 (Restricted Density Multiple Family Residential) and a zoning change could be required (the City’s Planning Department would make the determination). The existing Fire Station No. 7 currently houses four (4) firefighters and two (2) paramedics. Assigned apparatus include one (1) fire engine and one (1) rescue vehicle although other apparatus/vehicles may be temporarily located on site as directed by system management. The new fire station will initially house the same complement of assigned staff and apparatus as the existing station. However, the new facility would have the capacity to ultimately accommodate up to three (3) heavy and three (3) light apparatus vehicles and eighteen (18) firefighting/paramedic personnel. At any given time, only 6-7 personnel will be present at the site, with an occasional 12-15 personnel if a task force is assembled at the site.

The new facility would feature a two-story building and include standard design physical layout features that will be essentially replicated at each of the City’s fire fighting stations to be constructed or retrofitted under the Proposition F Fire Facilities Bond Program. The new station would include three heavy and three light apparatus bays, as well as an on-site diesel fueling station and parking space for command and on-duty firefighter-owned vehicles. The site would be surrounded on three sides by an 8 foot perimeter wall. Appropriate best management practices (BMPs) would be incorporated into the site plans to meet runoff requirements.

The existing Station No. 7 complement of eighteen (18) firefighting and rescue staff is divided into three 24-hour on-duty platoons. This staffing pattern would be maintained at the new replacement facility. Shift changes at all City of Los Angeles Fire Stations take place at 8:00 A.M. every third day.

All parking for assigned personnel would be provided on site. Ingress/egress would be from Plummer Street. The onsite traffic flow would be configured to allow pull-through of returning apparatus and positioning for exit directly to the street and warning lights may be required to stop traffic on Plummer Street. Backing of apparatus from Plummer Avenue into the station would not be required.

As previously stated, the proposed project site is vacant and devoid of structures. Some preliminary land shaping activities have taken place on site by a previous owner. The site occurs at an elevation that is higher than Plummer Street (2 to 3 feet) and would require grading and the export of excess soil.

Disposition of the existing Fire Station No. 7 at 14123 W. Nordhoff Street has not been determined at this time. Until such a determination is made, the Department of
General Services would maintain the buildings.

Construction of the proposed project would occur over a two-year period scheduled to commence in the third-quarter (Q-3) of 2012 and be complete in Q-3 of 2014. During this period, it is anticipated that parking, which is now unrestricted on the south side of Plummer Street in the vicinity of the proposed project site, might experience infrequent temporary restrictions. In addition, utility connections may be required on Plummer Street adjacent to the project site. Construction equipment would access the site via Plummer Street. The following general construction activities would be required:

- Site Clearing
- Excavation/Earthwork
- Foundation and Pad Construction
- Building Structure
- Landscaping and Off-Site Improvements

Site Clearing

As previously stated, the proposed project site has been razed and is devoid of structures. A minor quantity of demolition debris, consisting of broken concrete (comprising no more than two truckloads) remains and will require export.

Excavation/Earthwork

Following site clearing, the project site would be graded to meet design specifications and to accommodate site drainage requirements. The site is expected to be graded such that the site elevation is the same as the sidewalk along Plummer Street but slightly elevated at the south end. As part of the grading process, soil would be balanced onsite to the extent possible, and the soil compacted to design specifications. Up to 8,000 cubic yards of soil could be removed, which would require approximately 400 haul trips over a one-month period. The grading and excavation phase of the project is expected to generate the most construction traffic and use the most equipment. Equipment during this phase would include the following:

- 1 loader
- 1 backhoe/loader
- 1 compactor/roller
- 1 water truck
- Dump trucks for hauling
- 10 workers

Building Foundation and Pad Construction

Following grading, the building foundation and concrete pads for other elements of
the fire station site would be constructed in accordance with design recommendations in the geotechnical plans and the Building Code. Foundations may include caissons or other foundation structures. There would also be excavation for and placement of necessary utility lines.

Building Structure

Once foundations are constructed, building construction would commence. The structure could include concrete block or cast-in-place construction. Once the structure is erected, interior improvements would be made, including necessary ventilation and control equipment. Utilities would be connected as needed. This phase would also include erection of the perimeter wall.

Landscaping

Construction activities associated with this phase of work include the placement of landscaping materials in accordance with design specifications. Installation of irrigation systems to support site landscaping could be combined with the utility connection work previously described. Off-site improvements would include the placement of a sidewalk and other facilities needed to make the station public areas ADA (Americans with Disabilities Act) compliant.

The analysis in this document assumes that, unless otherwise stated, the project will be designed, constructed and operated following all applicable laws, regulations, ordinances and formally adopted City standards (e.g., Los Angeles Municipal Code and Bureau of Engineering Standard Plans). Construction will follow the uniform practices established by the Southern California Chapter of the American Public Works Association (e.g., Standard Specifications for Public Works Construction and the Work Area Traffic Control Handbook) as specifically adapted by the City of Los Angeles (e.g., The City of Los Angeles Department of Public Works Additions and Amendments to the Standard Specifications For Public Works Construction [AKA "The Brown Book," formerly Standard Plan S-610]).

As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability and, upon request, will provide reasonable accommodation to ensure equal access to its programs, services, and activities.

III. EXISTING ENVIRONMENT

The proposed project site is located in an urban setting predominated by low to medium-density residential uses. The proposed project would be developed on several contiguous, currently vacant parcels of land situated along the south side of Plummer Street between Van Nuys Boulevard and Cedros Avenue in the Mission Hills-Panorama City-North Hills Community Planning Area. Each of the parcels has been previously cleared of structures. There has been some rough grading of the site, but no recent construction has taken place (see Figure 4).
A depression lies near the western perimeter of the edge of the site which currently would appear to be an artifact of previous site preparation activities to support multi-family residential units.

The proposed project site lies within the Van Nuys quadrangle of the United States Geological Survey 7.5 minute series topographic map. It is situated at approximately 870 feet above Mean sea level along a gentle topographic gradient to the south.

Plummer Street, which bounds the site to the north and provides the only access and egress, is a Secondary Highway. To the west of the site is Cedros Avenue, which is a Collector Street, while Van Nuys Boulevard, a Class II Major Highway, lies to the east. Unrestricted parking along both sides of Plummer Street, in the vicinity of the proposed project, is currently permitted.
The site is not within 1,000 yards of an Alquist-Priolo zone and has not been deemed susceptible to any other geologic hazard such as subsidence or liquefaction. Moreover, the site and its environs appear on a relative flat portion of the San Fernando Valley floor and are not subject to mud flow or slope failure.

CONSISTENCY WITH LAND USE PLANS AND ZONING

Land Use Plans
The proposed project site lies within the Mission Hills-Panorama City-North Hills community planning area. Recently the site was designated a State Enterprise Zone, which provides for various site development “enhancers” such as increased floor area ratios (FAR), reduced parking requirements, and increased height allowances (ZI NO. 2374, 2010).

Zoning
Current zoning for the proposed project site is RD 1.5-1 (see Figure 5), which was changed in 1992 from RA-1 (Single Family Residential) to RD1.5-1 (Restricted Density Multiple Family Residential) to permit the construction of a planned 3-Story, 20-Unit Apartment Building. A Tentative Tract Map for 38 detached condominiums was filed but this project was abandoned by its owners before construction progressed beyond the demolition and removal of legacy on-site structures.

Source: ZIMAS 05/02/11

Figure 5 - Generalized Zoning Map - Proposed Project Site and Environs
Fire Stations are neither specifically prohibited nor permitted uses within residential land use designations under the City’s General Plan. Zoning for the proposed project site could be changed to “PF-Public Facilities, which among other public and governmental usage, includes Fire Stations. It is the purpose of the “PF” Public Facilities Zone to provide regulations for the use and development of publicly owned land in order to implement circulation, public recreation and service systems designations in the City’s adopted General, District and Community Plans.

CULTURAL RESOURCES

A records search was conducted by the South Central Coastal Information Center (SCCIC) for the proposed project that included a review of all archaeological sites within a ½ mile radius of the project site as well as a review of cultural resource reports on file. In addition, the California Points of Historical Interest (PHI), the California Historical Landmarks (CHL), the California Register of Historical Resources (CR) the National Register of Historic Places (NR), the California State Historic Resources inventory, (HRI), and the City of Los Angeles Historic-Cultural Monuments (LAHCM) listings were reviewed to determine the proposed project’s potential to adversely affect archaeological, cultural, or historic resources. The search concluded that:

- No archaeological sites were identified within a ½ mile radius of the proposed project site.
- No Points of Historical Interest or Historic Properties/Places were identified within a ½ mile radius of the proposed project site.
- Two properties, listed as “under evaluation” by the California Historic Resources lie within the ½ mile radius but well outside of the proposed project site.

TRAFFIC AND CIRCULATION

Existing Setting

The Project site is located 1.25 miles east of the San Diego (I-405) Freeway and 1.25 miles west of the Golden State (I-5) Freeway. The study area includes Plummer Street bounded by Cedros Avenue on the west and Van Nuys Boulevard on the east.

Existing Street System. The existing street system within the study area consists of a regional highway system consisting of major arterials and a local street system including secondary arterials, collectors and local streets. The San Diego (I-405) Freeway and Golden State (I-5) Freeway provide the primary regional access to the study area. Brief descriptions of the major and other arterial streets used to access the study are included in the following section.

Plummer Street – Plummer Street is a Secondary Highway that traverses in an east-west direction and defines the northern frontage of the project site. This roadway generally offers four travel lanes, two lanes per direction with a central left-
Van Nuys Boulevard – Van Nuys Boulevard is classified as a Class II Major Highway that traverses in a north-south direction within the study area. This roadway also provides four travel lanes, two lanes in each direction with a central left-turn lane/median. Within the study area, on-street parking is generally allowed along this roadway. The posted speed limit is 35 miles per hour. This roadway provides connections to the Golden State (I-5) Freeway and Ventura (US-101) Freeway.

Cedros Avenue – Cedros Avenue is classified as a Collector Street that runs in a north/south direction. Cedros Avenue generally offers two travel lanes, one lane in each direction. Within the study area, this roadway is undivided and does not have sidewalks or curbs. On-street parking is limited along this roadway. The speed limit is 25 miles per hour. This roadway connects with Plummer Street at an unsignalized intersection, west of the project site.

Existing Traffic Volumes. Weekday peak hour counts and 24-hour traffic counts were compiled from data collected at the analyzed intersection of Plummer Street and Van Nuys Boulevard and the segment of Plummer Street between Cedros Avenue and Van Nuys Boulevard in May 2011. These traffic volumes reflect typical weekday operations during current year 2011 conditions. The traffic volumes in Figure 6 represent, for the purposes of this analysis, existing 2011 conditions (Raju Associates, Inc. 2011).

Public Transportation System Existing Transit Conditions. Four bus lines currently serve the study area. These bus lines are operated by the Los Angeles County Metropolitan Transportation Authority (MTA). These transit lines are described below:

- MTA 167 - Line 167 is a local east/west line that provides service from Chatsworth to Studio City and travels primarily along Plummer Street within the study area. This line operates every day, including holidays, at a return frequency of approximately 30 minutes during peak commute hours. The western terminus is at the Chatsworth Station in Chatsworth.

The eastern terminus is at the intersection of Goodland Avenue/Ventura Boulevard in Studio City. This bus line has stops at Cedros Avenue/Plummer Street and Van Nuys Boulevard/Plummer Street within the study area.
MTA 233 - Line 233 is a local north/south line that provides service from Lake View Terrace to Sherman Oaks and travels primarily along Van Nuys Boulevard within the study area. This line operates every day, including holidays, at a frequency of approximately 18 minutes during peak commute periods. The northern terminus is at the intersection of Eldridge Avenue/Terra Bella Street in Lake View Terrace. The southern terminus is at the intersection of Van Nuys Boulevard/Moorpark Street in Sherman Oaks. This bus line has stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.

MTA 761 - Line 761 is a local north/south ‘Rapid Bus’ line that provides service from Pacoima to Westwood and travels primarily along Van Nuys Boulevard within the study area. This line operates every day, including holidays, at a frequency of approximately 10 minutes. The northern terminus is at the intersection of Van Nuys Boulevard/Glenoaks Boulevard in Pacoima. The southern terminus is at the intersection of Veteran Avenue/Wilshire Boulevard in Westwood. This bus line has stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.
• MTA 902 - Line 902 is a local north/south line that provides limited stop service from Pacoima to North Hollywood and travels primarily along Van Nuys Boulevard within the study area. This line operates Monday through Friday at a frequency of approximately 12 minutes during peak commute periods. The northern terminus is at the intersection of Van Nuys Boulevard/Glenoaks Boulevard in Pacoima. The southern terminus is at the North Hollywood Metro Red Line Station. This bus line has stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.
IV. **ENVIRONMENTAL EFFECTS – INITIAL STUDY CHECKLIST**

This section documents the screening process used to identify and focus upon environmental impacts that could result from this project. The IS checklist below follows closely the form prepared by the Governor’s Office of Planning and Research and was used in conjunction with the City’s CEQA Thresholds Guide and other sources to screen and focus upon potential environmental impacts resulting from this project. Impacts are separated into the following categories:

- **No Impact.** This category applies when a project would not create an impact in the specific environmental issue area. A “No Impact” finding does not require an explanation when the finding is adequately supported by the cited information sources (e.g., exposure to a tsunami is clearly not a risk for projects not near the coast). A finding of “No Impact” is explained where the finding is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

- **Less Than Significant Impact.** This category is identified when the project would result in impacts below the threshold of significance, and would therefore be less than significant impacts.

- **Less Than Significant After Mitigation.** This category applies where the incorporation of mitigation measures would reduce a “Potentially Significant Impact” to a “Less Than Significant Impact.” The mitigation measures are described briefly along with a brief explanation of how they would reduce the effect to a less than significant level. Mitigation measures from earlier analyses may be incorporated by reference.

- **Potentially Significant Impact.** This category is applicable if there is substantial evidence that a significant adverse effect might occur, and no feasible mitigation measures could be identified to reduce impacts to a less than significant level. If there are one or more “Potentially Significant Impact” entries when the determination is made, an Environmental Impact Report (EIR) is required.

Sources of information and/or explanation that adequately support each finding are referenced following each question. All sources so referenced are available for review at the offices of the Bureau of Engineering, 1149 South Broadway, Suite 600, Los Angeles, California 90015 (call Catalina Hernandez at (213) 485-5756 for an appointment). Answers to other questions (as well as answers of “no impact” that need further explanation) are discussed following each question.

In addition, as noted above in Section E, Project Actions and Approvals, the analysis in this document assumes that, unless otherwise stated, the proposed project will be designed, constructed and operated following all applicable laws, regulations, ordinances and formally adopted City standards (e.g., *Los Angeles Municipal Code* and Bureau of Engineering *Standard Plans*). Construction will follow the uniform
practices established by the Southern California Chapter of the American Public Works Association (e.g., Standard Specifications for Public Works Construction and the Work Area Traffic Control Handbook) as specifically adapted by the City of Los Angeles (e.g., The City of Los Angeles Department of Public Works Additions and Amendments to the Standard Specifications For Public Works Construction [AKA "The Brown Book," formerly Standard Plan S-610]).

Issues

1. AESTHETICS – Would the project:

 a) Have a substantial adverse effect on a scenic vista?

Potentially Significant	Less Than Significant	Mitigation	Less Than Significant	No Impact
				X

 Reference: 16 (Sections A.1 and A.2)
 Comment: The term "views" generally refers to visual access to, or the visibility of, a particular sight from a given vantage point or corridor. A significant impact may occur if the proposed project obstructs, interrupts, or diminishes a valued view or proposes standards for height and bulk of structures or other elements that inadequately protect existing visual resources and/or views.

 The proposed project would occupy several contiguous parcels that are currently razed, vacant, and devoid of significant visual elements. The new fire station complex would be designed to fit in with its surroundings which are dominated by multi-level residential structures.

 b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

Potentially Significant	Less Than Significant	Mitigation	Less Than Significant	No Impact
				X

 Reference: 13, 16 (Section A.1); 26
 Comment: The proposed project would be located mid-block immediately south of Plummer Street between Van Nuys Boulevard to the east and Cedros Avenue to the west. Neither of these streets has been designated as scenic highways by either the state or City of Los Angeles. The proposed project is not within sight of or visible from a designated scenic highway or significant scenic resource. The currently vacant parcel is devoid of trees, rock outcroppings, historic buildings, or architecturally significant structures.

 c) Substantially degrade the existing visual character or quality of the site and its surroundings?

Potentially Significant	Less Than Significant	Mitigation	Less Than Significant	No Impact
				X
Reference: 16 (Sections A.1 and A.2) A significant impact could occur if the proposed project introduced incompatible visual elements to the project site or visual elements that would be incompatible with the character of the area surrounding the project site. A significant impact could also occur if the proposed project introduced features that would detract from the existing valued aesthetic quality of a neighborhood, community, or localized area by conflicting with important aesthetic elements or the quality of the area (such as theme, style, setbacks, density, massing, etc.), or by being inconsistent with applicable design guidelines.

Comment: The proposed project would result in the placement of structures on a currently vacant site. The structures would be designed to conform to existing setback requirements and height restrictions. Construction materials and colors would be selected to blend with surrounding buildings.

d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?

Reference: 16 (Section A.4) New light sources introduced by a project may increase ambient nighttime illumination levels. Additionally, nighttime spillover of light onto adjacent properties has the potential to interfere with certain functions, including vision, sleep, privacy, and general enjoyment of the natural nighttime condition.

Comment: The proposed project would introduce a new low-level source of nighttime illumination necessary to maintain safe operations and site security. Moreover, the proposed project would involve the movement of emergency response personnel and vehicles that could require the use of supplemental illumination, at unpredictable hours of the day or night. Notwithstanding, these sources would be infrequent, of short duration, and be deemed to be less than significant.

2. AGRICULTURE RESOURCES – Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

Reference: 5

Comment: The proposed project would be located within the City of Los Angeles where no Prime or Unique Farmland or Farmland of Statewide Importance exists.

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?
Issues

Reference: 13, 16
Comment: The proposed project would be located within a completely urbanized area within the City of Los Angeles, which is currently zoned for medium-density residential use. No lands under Williamson Act contracts would be involved.

c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of farmland, to non-agricultural use?

Reference: 13, 16
Comment: See response to Item 2.b) above

3. AIR QUALITY – Would the project:
 a) Conflict with or obstruct implementation of the applicable air quality plan?

Reference: 16 (B.1, B.2), 20
Comment: The proposed project is located within the South Coast Air Basin under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). The SCAQMD is the air pollution control district responsible for the Air Quality Management Plan (AQMP), which is a comprehensive air pollution control program for attaining state and federal ambient air quality standards. A significant impact would occur if the project were not consistent with the AQMP or the City’s General Plan.

The project is located within the Mission Hills-Panorama City North Hills Community Plan Area. The proposed project would be consistent with the community plan as it represents an important public service facility. The community plan is required to conform to the General Plan and its elements, including the Air Quality Element. As such, the project would also be consistent with the Air Quality Element and the AQMP. Therefore, neither project construction nor operation would conflict with the AQMP.

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Reference: 16 (B.1, B.2), 20
Comment: A significant impact may occur if the proposed project violated any SCAQMD air quality standard. The SCAQMD has set thresholds of significance for reactive organic gases (ROG), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter (PM10) emissions resulting from construction and operation in the South Coast Air Basin. SCAQMD has also set interim CEQA greenhouse gases (GHG) thresholds for industrial projects.

Construction of the proposed project would occur over a two-year period scheduled to commence in the third quarter of 2012 and be completed in the third quarter of 2014. To estimate construction impacts, construction emissions were calculated using the SCAQMD’s new land use emissions model, CalEEMOD, version 2011.1.1. The peak daily construction emissions shown in Table 3B-1 below and in more detail in Table 1 in Appendix A (Air Quality Report) are well below the significance thresholds, and therefore less than significant, for all criteria pollutants.

Proposed project operational emissions were conservatively calculated by assuming the new fire station would operate at full capacity in its opening year of 2014. This assumption represents a worst-case scenario. Operational emissions were also calculated for the existing fire station in 2011, which is the baseline. The net change in emissions associated with proposed project operations, therefore, is the proposed project emissions minus the baseline emissions. The resulting project increment emissions are shown in Table 3B-1 and compared to the SCAQMD air quality significance thresholds. Table 2 in Appendix A presents the detailed calculations of the peak daily criteria pollutant emissions associated with operation of the existing fire station (CEQA baseline), and Table 3 in Appendix A presents the peak daily criteria pollutant and annual GHG emissions associated with operation of the proposed project. The incremental emissions (proposed project minus baseline) are shown in Table 3B-1. As can be seen, the peak daily project increment for operational emissions in Table 3B-1 is well below the thresholds, and therefore less than significant, for all criteria pollutants. Similarly, the annual CO₂e emission rate of 264.7 metric tons per year (see Table 3 in Appendix A) is well below the threshold of 10,000 metric tons per year, and therefore is less than significant.
As shown in Table 3B-1 below, daily construction and operational emissions would not exceed SCAQMD significance thresholds.

<table>
<thead>
<tr>
<th>Table 3B-1: Peak Daily Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Construction Emissions (lbs/day, unmitigated)</td>
</tr>
<tr>
<td>SCAQMD Construction Thresholds (lbs/day)</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
</tr>
<tr>
<td>Operational Emissions</td>
</tr>
<tr>
<td>SCAQMD Operations Thresholds (lbs/day)</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
</tr>
</tbody>
</table>

SCAQMD has recommended a greenhouse gas significance threshold of 10,000 metric tons per year of carbon dioxide equivalent (CO$_2$) for assessing the significance of potential GHG emissions. SCAQMD allows GHG emissions from construction to be amortized over 30 years.

The calculated CO$_2$ for this project is far below the SCAQMD recommended threshold, and therefore not expected to have a significant impact.

CO$_2$ EMISSIONS

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>1.04 metric tons/day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>323.4 tons/year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation Phase</th>
<th>0.85 metric tons/day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>264.7 tons/year</td>
</tr>
</tbody>
</table>

Note: metric tons per day are calculated by dividing tons per year by 312 day, which is equivalent to a 6-day work week times 52 weeks)

Minimal emissions are anticipated as a result of operation and maintenance. The total emissions from worker vehicle exhaust are considered negligible and should not exceed SCAQMD daily operational emission thresholds or have a significant impact on air quality.

Although construction emission are anticipated to be below SCAQMD thresholds, contractors would be required to follow all applicable SCAQMD rules and regulations, including AQMD Rule 403 (Fugitive Dust) and 431 (Diesel Equipment), to minimize air quality impacts. Contractors, for example, would water dusty areas and minimize the tracking of soil from unpaved dirt areas to paved roads.
Issues

<table>
<thead>
<tr>
<th>Issues</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Reference: 15, 16 (B.1,B.2)

Comment: A significant impact may occur if the proposed project would result in a cumulatively considerable net increase of a criteria pollutant for which the South Coast Air Basin exceeds federal and state ambient air quality standards and has been designated as an area of non-attainment by the USEPA and/or California Air Resources Board. The South Coast Air Basin is a non-attainment area for carbon monoxide, nitrogen dioxide, ozone, particulate matter (PM10), and fine particulate matter (PM2.5). As indicated in 3(b) above, construction and operational emissions of the project would not exceed the SCAQMD’s thresholds of significance for criteria pollutants, and therefore, the proposed project would not result in a cumulatively considerable increase of criteria pollutants. For those emissions generated during construction, the minor generation of criteria pollutants would be temporary and short-term in nature.

| d) Expose sensitive receptors to substantial pollutant concentrations? | ☐ | ☐ | ☒ | ☐ | ☐ |

Reference: 16 (B.1,B.2 and B.3), 20

Comment: The proposed project’s onsite construction and operational emissions were also compared to the SCAQMD screening-level Localized Significance Thresholds (LSTs), which assess a project’s localized impact on ambient air quality concentrations at nearby receptors such as residences or workplaces. As shown in Table 3D-1 below, the proposed project’s peak daily on-site emissions are less than the LSTs for all pollutants, for both construction and operation. Table 4 in Appendix A provides a more details breakdown of onsite emissions and compares the proposed project’s peak daily on-site construction and operational emissions to the SCAQMD LSTs. Therefore, the project’s impacts on local ambient air pollutant concentrations would be less than significant.
Table 3D-1: Peak Daily Emissions (lbs/day)

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Emission Source</th>
<th>Peak Daily On-Site Emissions (lb/day)</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Total On-Site Construction Emissions</td>
<td>48.7</td>
<td>24.6</td>
<td>4.3</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LST Construction Thresholds</td>
<td>114</td>
<td>786</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds Exceeded?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Total On-Site Operational Emissions</td>
<td>0.06</td>
<td>0.05</td>
<td>0.0002</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LST Operation Thresholds</td>
<td>114</td>
<td>786</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds Exceeded?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

e) Create objectionable odors affecting a substantial number of people?

Reference: 16 (B.1, B.2)

Comment: During construction activities, sources of odor are diesel emissions from construction equipment and volatile organic compounds from paving activities. However, these odors would be temporary, localized, and consistent with construction emissions throughout the region. As a consequence, potential odor impacts are considered less than significant. Nonetheless, applicable best management practices such as those in SCAQMD Rule 431 (Diesel Equipment) would, in addition to minimizing air quality impacts, also help minimize potential construction odors.

4. BIOLOGICAL RESOURCES – Would the project:

 a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Reference: 11, 16 (C)

Comment: The proposed project would be located within the USGS Van Nuys 7.5 Quadrangle wherein the following candidate, sensitive, or special status species are listed by the California Department of Fish and Game or U.S. Fish and Wildlife Service according to the California Natural Diversity Database but are absent from the site because of the lack of suitable habitat as indicated by the following table.
Issues

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat Associations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>coastal California gnatcatcher</td>
<td>Costal scrub and Chaparral</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>least Bell's vireo</td>
<td>Riparian communities</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>silver-haired bat</td>
<td>Temperate woodland and coniferous forest</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>hoary bat</td>
<td>Urban settings; densely vegetated locations</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>pallid bat</td>
<td>Coastal sage, shrub-steppe, and open grasslands</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>Los Angeles pocket mouse</td>
<td>Coastal sage, shrub-steppe, and open grasslands</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>western pond turtle</td>
<td>Ponds, lakes, streams, large rivers, slow-moving sloughs, and quiet waters.</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>coast horned lizard</td>
<td>Foothills and coastal plains from Los Angeles area to northern Baja California locations with abundant, open vegetation such as chaparral or coastal sage scrub.</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>Riversidian Alluvial Fan Sage Scrub</td>
<td>Floodplain habitats containing riverine cobbles, boulders, and sand.</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>California Walnut Woodland</td>
<td>California chaparral & woodlands</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>Davidson's bush-mallow</td>
<td>Eastern San Fernando Valley, Los Angeles County</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>San Fernando Valley spineflower</td>
<td>Dry sandy places to 2500', San Fernando Valley to Orange and San Diego</td>
<td>No habitat on site</td>
</tr>
<tr>
<td>Plummer's mariposa-lily</td>
<td>Dry, rocky chaparral; yellow-pine forest, valley grassland</td>
<td>No habitat on site</td>
</tr>
</tbody>
</table>

Source: California Department of Fish and Game, 2011

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Reference: 11, 16 (C)
Issues

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

Comment: The proposed project would occur on several recently razed parcels within a fully urbanized and developed location that is neither riparian nor identified as a sensitive natural community by any local, regional plans or regulations of the California Department of Fish and Game or the U.S. Fish and Wildlife Service

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Reference: 16 (C), 24

Comment: The proposed project would occur on a fully developed urban parcel that was until recently use to support residential use. There are no rivers, streams, ponds, pools or other aquatic sources on or near the site, which is also devoid of wetlands or other areas protected by the Clean Water Act.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Reference: 16 (C)

Comment: The proposed project site is not known to host wildlife species of concern or to provide nursery sites or migration corridors.

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Reference: 11, 16 (C)

Comment: The proposed project would occur on a site that has been previously cleared and is devoid of any trees.

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Reference: 13, 16 (C), 24

Comment: A significant impact may occur if the proposed project would be inconsistent with mapping or policies in any conservation plans of the cited type. Please see response to Item 4.b)

5. CULTURAL RESOURCES – Would the project:

a) Cause a substantial adverse change in the significance of a historical
resource as defined in California Code of Regulations Section 15064.5?

Reference: 4, 7, 16 (D.3), 19

Comment: The proposed project would not modify any existing structure. Staff and equipment would be transferred from the current F.S. #7 facilities, located at 14123 Nordoff Street to the proposed project location and the Nordoff Street facilities would be turned over to the City’s Department of General Services for management until its disposition is determined.

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to California Code of Regulations Section 15064.5?

Reference: 4, 16 (D.2), 19

Comment: A records search was conducted by the South Central Coastal Information Center (SCCIC) for the proposed project that included a review of all archaeological sites within a ½ mile radius of the project site as well as a review of cultural resource reports on file. In addition, the California Points of Historical Interest (PHI), the California Historical Landmarks (CHL), the California Register of Historical Resources (CR) the National Register of Historic Places (NR), the California State Historic Resources inventory, (HRI), and the City of Los Angeles Historic-Cultural Monuments (LAHCM) listings were reviewed to determine the proposed project’s potential to adversely affect archaeological, cultural, or historic resources. The search concluded that:

- No archaeological sites were identified within a ½ mile radius of the proposed project site
- No Points of Historical Interest, or Historic Properties/Places were identified within a ½ mile radius of the proposed project site

Two properties, listed as “under evaluation” by the California Historic Resources lie within the ½ mile radius but well outside of the proposed project’s zone of influence. However, a halt-work condition should be in place in the event that cultural resources are discovered during construction. This condition is included per standard Public Works construction practice.

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Reference: 16 (D.1), 21

Comment: A paleontological resources records search was conducted by the Los Angeles Natural History Museum to determine the likelihood of encountering paleontological resources. The entire project area contains surficial deposits of younger Quaternary Alluvium that does not typically contain significant vertebrate fossil remains. There have been previous finds in the San Fernando Valley, but were generally located at substantial depths that are beyond the depths required for project construction. Based on the limited excavation depths and the previously disturbed nature of the project site,
significant impacts to paleontological resources are not likely or anticipated. If discovery of paleontological resources or unique geologic features are made during construction, standard construction practices would be employed such as the suspension of work until a qualified paleontologist can evaluate the find and make recommendations as necessary for the protection of the discovered paleontological resources.

d) Disturb any human remains, including those interred outside of formal cemeteries?

Reference: 16 (D.2), 19

Comment: The site is not known to have been used in the past for the interment of human remains and none are known to currently exist. If, however, human remains are unearthed during construction, work would be halted, the discovery location secured, and the coroner notified to direct the disposition of the remains.

6. GEOLOGY AND SOILS – Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?

References: 6, 16 (E.1)

Comment: A significant impact may occur if the proposed project were located within a state-designated Alquist-Priolo Zone or other designated fault zone and appropriate building practices were not followed.

The project site is not located in an Alquist-Priolo Earthquake Fault Zone.

ii) Strong seismic ground shaking?

Reference: 6, 16 (E.1)

Comment: A significant impact may occur if the proposed project design did not comply with building code requirements intended to protect people from hazards associated with strong seismic ground shaking.

In general, the Los Angeles region is subject to the effects of seismic activity. As stated in the discussion of Project Purpose and Need, the proposed project would be designed to comply with the most current Building and Safety Codes including those to minimize risks to humans from strong seismic shaking.
iii) Seismic-related ground failure, including liquefaction?

Reference: 6, 16 (E.1)

Comment: A significant impact may occur if the proposed project would be located in an area identified as having a high risk of liquefaction and appropriate design measures required within such designated areas were not incorporated into the project.

The site is not located within a liquefaction zone according to the ZIMAS Parcel Profile Report.

iv) Landslides?

Reference: 6, 16 (E.1)

Comment: A significant impact may occur if the proposed project were located in a hillside area with soil conditions that would suggest high potential for sliding and appropriate design measures were not implemented.

The site is not located within a zone subject to landslide according to the ZIMAS Parcel Profile Report.

b) Result in substantial soil erosion or the loss of topsoil?

Reference: 16 (E.2)

Comment: A significant impact may occur if the proposed project were to expose large areas to the erosive effects of wind or water for a prolonged period of time.

The project site is comprised of several currently vacant lots with several areas of exposed bare soils. The proposed project would involve clearing and removal of volunteer grasses, which now limit the effects of soil loss through the erosive forces of wind and water. Construction excavation activities would employ Standard Best Construction Management Practices to minimize soil loss through erosion. The completed proposed project would cover most of the site with impervious materials and landscape the remainder thus minimizing erosion.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Reference: 6, 16 (E.2)

Comment: A significant impact may occur if the proposed project were built in an unstable area without proper site preparation or design features to provide.
adequate foundations for project buildings, thus posing a hazard to life and property.

The proposed project would not be located on an unstable geologic unit. The project would be designed and constructed in compliance with all pertinent building codes and incorporate all pertinent design specifications (including soils report recommendations) to prevent injury to persons or damage to property.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

Reference: 16 (E.2)

Comment: Expansive soils typically have high clay content and may present a significant environmental impact to a project due to a high shrink-swell potential. Shrinkage and swelling of soils underlying a project area may cause structures to become physically unsound or walkways to buckle and become dangerous or difficult to navigate.

Prior to any construction and as a standard practice, a geotechnical evaluation would be prepared which would prescribe methods, techniques, and specifications for: site preparation, treatment of undocumented fill and/or alluvial soils, fill placement on sloping ground, fill characteristics, fill placement and compactions, temporary excavations and shoring, permanent slopes, treatment of expansive soils, and treatment of corrosive soils. Design and construction of the proposed project would conform to recommendations in the geotechnical evaluation; therefore, impacts from potentially expansive soil would not be significant.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

Reference: 16

Comment: A significant impact may occur if the proposed project were built on soils that were incapable of adequately supporting the use of septic tanks or alternative wastewater disposal system, and such a system was proposed.

The project area is served by the City’s wastewater collection, conveyance, and treatment systems and the proposed project would not result in the need to treat additional wastewater flows or require the use of an alternative wastewater disposal system.

7. GREENHOUSE GAS EMISSIONS – Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?
Issues

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>Less Than Significant Mitigation</th>
<th>No Impact</th>
</tr>
</thead>
</table>

Reference: 20

Comment: Tables 1 and 3 in Appendix A, Air Quality Report, contain the results of the emissions calculation for construction and operation, respectively, including greenhouse gas emissions. Based on the evaluation, the generation of greenhouse gases would not exceed significance thresholds.

b) Conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases?

Reference:

Comment: As discussed in 7. a) above, greenhouse gas emissions from the proposed project would be less than significant. As a consequence, the proposed project is not expected to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases.

8. HAZARDS AND HAZARDOUS MATERIALS – Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Reference: 16 (F.1, F.2)

Comment: A significant impact may occur if the proposed project involved the use or disposal of hazardous materials as part of its routine operations and would have the potential to generate toxic or otherwise hazardous emissions.

The proposed project is the construction and operation of a fire station, which would involve the occasional use of paints, solvents, pesticides, and other petroleum based products and the routine use and transport of motor fuels and lubricants. However, the use, transport, and storage of these materials would be managed under standard operating procedures designed to prevent the accidental release or contact with the public of these materials.

Construction of the new fire station would include the installation of an above-ground storage tank for fueling operations. The tanks and associated piping and equipment would comply with applicable leak detection, monitoring, and construction codes and would conform to the City’s fire codes to prevent significant hazards to the public or the environment.

Minor maintenance, such as oil changes, would be performed by the firefighters at both the new station and the existing station. All materials, both new and waste, would be handled in accordance with all applicable regulations to prevent significant hazards to the public or the environment.

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
Reference: 10, 16 (F.1, F.2)

Comment: A significant impact may occur if the proposed project involved a risk of accidental explosion or utilized substantial amounts of hazardous materials as part of its routine operations that could potentially pose a hazard to the public under accident or upset conditions.

The proposed project would use, at most, minimal amounts of hazardous materials for routine cleaning. These materials would not pose any substantial potential for accident conditions involving the release of hazardous materials into the environment. The fuel storage tank referenced in 8(a) would comply with applicable leak detection, monitoring, and construction codes and would conform to the City’s fire codes to prevent significant hazards to the public or the environment.

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Reference: 16 (F.2), 20, 25

Comment: A significant impact may occur if the proposed project were located within one-quarter mile of an existing or proposed school site and were projected to release toxic emissions which pose a hazard beyond regulatory thresholds.

The proposed project would be located approximately one-quarter mile of an existing elementary school (Liggett Elementary School) located at 9373 Moonbeam Avenue to the southeast of the project site. However, operation of the proposed project would not involve industrial processes that could release toxic air contaminants and is therefore not expected to release toxic emissions that exceed regulatory thresholds. See also response to Item 8 a) above.

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Reference: 16 (F.2), 23

Comment: The project site and adjacent parcels are not included on any list of hazardous materials sites. A review of various environmental databases of hazardous materials releases (Phase I ESA) was performed, and no recorded hazardous materials releases were identified. In addition, a review of the City’s Hazardous Materials Disclosure Program records (performed by the Los Angeles Fire Department) of the adjacent properties did not identify records of the storage of hazardous materials.

Any contamination encountered during site excavation would be handled in accordance with all applicable laws and regulations and under the guidance...
and supervision of the Los Angeles Fire Department, which is the lead agency for soil-only contamination (Ninyo & Moore, 2011).

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

Reference: 16 (F.1), 25

Comment: A significant impact may occur if the proposed project site were located within a public airport land use plan area, or within two miles of a public airport, and would create a safety hazard.

The proposed project is not located within two miles of a public airport or airport land use planning area.

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

Reference: 16 (F.1), 25

Comment: No private airstrips are located within the vicinity of the project site.

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Reference: 16 (F.1), 22

Comment: A significant impact may occur if the proposed project were to substantially interfere with roadway operations used in conjunction with an emergency response plan or evacuation plan or would generate sufficient traffic to create traffic congestion that would interfere with the execution of such plan.

The proposed project would not alter the adjacent street system. As applicable, any traffic detour plans during construction would address emergency response or emergency evacuation for implementation during construction.

The proposed project would not generate substantial additional traffic. It would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. The larger fire station facility would enable additional personnel and equipment to be assigned as needed, allowing the Fire Department to meet or exceed response time goals.

h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Reference: 16 (F.2)
Comment: A significant impact may occur if the proposed project were located in a wildland area and poses a significant fire hazard, which could affect persons or structures in the area in the event of a fire.

The project site is not located within a wildland or a very high fire hazard severity zone.

9. HYDROLOGY AND WATER QUALITY – Would the project:
 a) Violate any water quality standards or waste discharge requirements?
 ![] [] [] []

Reference: 16 (G.2)

Comment: A significant impact may occur if the proposed project discharged water which did not meet the quality standards of agencies which regulate surface water quality and water discharge into storm-water drainage systems. For example, if a project were not in compliance with all applicable regulations with regard to surface water quality as governed by the State Water Resources Control Board (SWRCB). These regulations include compliance with the Standard Urban Storm Water Mitigation Plan (SUSMP) requirements to reduce potential water quality impacts.

During construction, the project would comply with applicable storm water management requirements for pollution prevention (for example, compliance with the Standard Urban Storm Water Mitigation Plan (SUSMP) requirements to reduce potential water quality impacts). Construction practices would include erosion control, spill prevention and control, solid and hazardous waste management, and dust control to reduce the discharge of pollutants from construction areas to the storm water system.

Standard design plans for fire station facilities provide that surface flows be collected and diverted into the local storm drain system, which is adequate to accommodate run-off from the proposed project site. The proposed project would include a trap to entrain grease prior to discharge to the sanitary sewer system. No impacts related to potential discharge into surface water or changes in water quality have been identified.

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

Reference: 16 (G.3, G.4)

Comment: Groundwater is a major component of the water supply for many public water suppliers in the Los Angeles metropolitan area, and is also used by private industries, as well as a limited number of private agricultural and domestic users. A project would normally have a significant impact on
groundwater supplies if it were to result in a demonstrable and sustained reduction of groundwater recharge capacity or change the potable water levels sufficiently that it would reduce the ability of a water utility to use the groundwater basin for public water supplies or storage of imported water, reduce the yields of adjacent wells or well fields, or adversely change the rate or direction of groundwater flow.

The proposed project would not utilize existing groundwater resources nor would it interfere with established groundwater recharge areas. While the existing site is pervious, this condition is relatively recent as prior to site razing, accomplished by prior owners, the site was largely covered with impervious materials. The proposed project would involve the placement of impervious materials over much of the site; however, ultimate site coverage would be less than the historic coverage; hence, the percolation potential of the site would be approximately the same as the historic condition and no interference with local groundwater recharge would occur.

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

Reference: 16 (G.1, G.2)
Comment: A significant impact may occur if the proposed project resulted in a substantial alteration of drainage patterns that resulted in a substantial increase in erosion or siltation during construction or operation of the project.

The proposed project will grade the site to facilitate the capture of surface runoff flow by the existing storm drain system in Plummer Street, which has sufficient capacity to accommodate the proposed project. The potential for sedimentation runoff during construction would be minimized by implementation of construction Best Management Practices (BMP). The proposed project does not involve the alteration of a stream, river, or other body of water.

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?

Reference: 16 (G.1)
Comment: A significant impact may occur if the proposed project resulted in increased runoff volumes during construction or operation of the proposed project that would result in flooding conditions affecting the project site or nearby properties.

The proposed project would involve placement of impervious materials (pavement and structures) over currently bare soils, thereby increasing the
potential volume of surface water runoff. However, runoff during construction would be subject to the controls required by standard specifications (Standard Plan 610).

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

Reference: 16 (G.2)
Comment: A significant impact may occur if the volume of runoff were to increase to a level which exceeded the capacity of the storm drain system serving a project site. A significant impact may also occur if the proposed project would substantially increase the probability that polluted runoff would reach the storm drain system.

The local stormwater system was sized to provide adequate capacity for runoff from the proposed project site, which was, until recently, covered by impervious materials. See also, response to Item 9 b) above.

f) Otherwise substantially degrade water quality?

Reference: 16 (G.3)
Comment: A significant impact may occur if a project included potential sources of water pollutants and potential to substantially degrade water quality.

The primary sources of potential water quality degradation have been addressed above and no other sources of water quality degradation are anticipated in association with implementation of the proposed project. The proposed project would not degrade water quality.

g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

Reference: 16
Comment: The proposed project does not involve housing.

h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?

Reference: 12
Comment: A significant impact may occur if the proposed project were located within a 100-year flood zone and would impede or redirect flood flows.
The project site is located in Panel 06037C1305F of the Federal Emergency Management Agency Flood Insurance Rate Map; and is not located within a flood hazard area.

 i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

 Reference: 16 (E.1, G.3)
 Comment: A significant impact may occur if the proposed project were located in an area where a dam or levee could fail, exposing people or structures to significant risk of loss, injury or death.

 The Inundation and Tsunami Hazard Areas map (Exhibit G) of the Safety Element of the Los Angeles City General Plan (adopted by City Council November 26, 1996) shows that the project site is not located in an area potentially subject to flooding from a dam or levee failure.

 j) Inundation by seiche, tsunami, or mudflow?

 Reference: 16 (E.1)
 Comment: A significant impact may occur if the proposed project were located in an area with inundation potential due to seiche, tsunami, or mudflow.
 See the discussion under Checklist item 9. i) above. No inland water bodies are located nearby, making inundation due to a seiche unlikely. The project site is flat and no potential source of mudflow has been identified.

10. LAND USE AND PLANNING – Would the project:

 a) Physically divide an established community?

 Reference: 13, 16 (H.2)
 Comment: A significant impact may occur if the proposed project were sufficiently large or otherwise configured in such a way as to create a physical barrier within an established community.

 The project does not include any features such as permanent road closures or the placement of above ground infrastructure that would isolate a particular neighborhood or community.

 b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
Issues

Reference: 13, 16 (H.1, H.2), 24

Comment: A significant impact may occur if the proposed project were inconsistent with the General Plan, or other applicable plan, or with the site’s zoning if designated to avoid or mitigate a significant potential environmental impact.

The Mission Hills-Panorama City-North Hills Community Plan recognizes the need for adequate fire protection. It further recognizes that “it may be necessary to expand or relocate existing facilities as land patterns change.”

The proposed project site is presently zoned for RD1.5-1 Restricted-Density Residential use. Approval by the Planning Department may be required as a public benefits project, which would allow a fire station in any zone. The Public Benefit approval process includes performance standards to ensure compatibility of the project with the neighborhood.

c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

Reference: 16 (H.1, H.2), 24

Comment: A significant impact may occur if the proposed project were located within an area governed by a habitat conservation plan or natural community conservation plan and would conflict with such plan.

As discussed under 4(f) above, no habitat conservation plan or natural community conservation plan is known to exist for the project site or immediate vicinity.

11. MINERAL RESOURCES – Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

Reference: 13, 16 (E.4)

Comment: A significant impact may occur if the project were located in an area used or available for extraction of a regionally important mineral resource, if the project converted an existing or potential present or future regionally-important mineral extraction use to another use, or if a project affected access to such a site.

The project site is not located within an area that contains known mineral resources.

b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?
Issues

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

Reference: 13, 16 (E.4), 24

Comment: A significant impact may occur if a project were located in an area used or available for extraction of a locally-important mineral resource and the project converted such a resource to another use or affected access to such a site.

The project site is not located within an area that contains known mineral resources.

12. NOISE – Would the project result in:

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Reference: 13 (Noise Element), 16 (I.1, I.2)

Comment: Fire Department personnel are required by state law to sound the siren when exiting the station to respond to emergency calls; however, they make every effort to minimize use of the siren if the station is located in a residential setting. If no traffic is present on the exiting street, the siren is briefly sounded upon exiting the station and is then silent until the emergency vehicle meets a major street or traffic. Emergency vehicle sirens are not subject to the limitations of noise ordinances because, by their very nature, they are intended to be unmistakably noticed. If the surrounding land use is converted to residential, the residents could expect to hear the sirens. Again, fire stations are located in all land use areas by necessity, and the brief noise of the sirens is not considered a significant impact in any zone.

b) Exposure of persons to or generation of excessive ground-borne vibration or ground-borne noise levels?

Reference: 13 (Noise Element), 16 (I.1, I.2)

Comment: The proposed project would involve earthwork that could generate groundborne noise or vibrations during construction; however, any such incidents would be temporary, intermittent, and of short duration.

c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

Reference: 13 (Noise Element), 16 (I.1, I.2)

Comment: See Checklist Item 12.a) above. The very short-term nature and infrequency of emergency vehicle sirens would not be expected to increase the community noise equivalent level (24-hour ambient noise levels with adjustments for evening and nighttime noise) of the neighborhood.
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Reference: 13 (Noise Element), 16 (I.1, I.2)

Comment: See Checklist Item 12.a) above.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

Reference: 25

Comment: The proposed project site is not located within an airport land use or within two miles of a public airport.

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

Reference: 25

Comment: The proposed project is not located in the vicinity of a private airstrip.

13. POPULATION AND HOUSING – Would the project:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

Reference: 16 (J.1)

Comment: The proposed project would have no impact on existing population or housing. It would be constructed on several currently vacant parcels from which low-density residential dwelling units were previously removed for a medium-density residential project that was subsequently abandoned.

b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

Reference: 16 (J.1, J.2)

Comment: See response to Item 13 a) above. The proposed project would have no impact on the existing availability of housing.

c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Reference: 16 (J.1, J.2)
14. PUBLIC SERVICES –

 a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

 i) Fire protection?

 Reference: 16 (K.2)

 Comment: The proposed project would result in the physical relocation of F.S. No.7 from its current site to the new (Plummer Street) site. No substantive changes in current assigned apparatus and staff, service area, response times, or other performance metrics are anticipated.

 ii) Police protection?

 Reference: 16 (K.1), 10

 Comment: The proposed project would have no effect on provision of police services and would not require additional police protection beyond what is currently provided. As per Bureau of Engineering Standard Project Specifications, construction activities would comply with applicable Municipal Code requirements. The nearest local police station would be notified, as appropriate, of traffic control plans during construction so as to coordinate emergency response routing during construction work.

 iii) Schools?

 Reference: 16 (K.3)

 Comment: The proposed project is located within one-half mile of several elementary and secondary public and private schools; however, neither its construction nor operation is expected to interfere with these facilities.

 iv) Parks?

 Reference: 16 (K.4)

 Comment: The proposed project is not within one-mile of a public park and is, therefore not likely to have any effect on such a facility.

 v) Other public facilities?
Issues

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant Impact</th>
<th>Mitigation</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
</table>

Reference: 16 (K.5), 25

Comment: The proposed project would have no effect on other public facilities.

15. RECREATION –

- a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? □ □ □ ☒

Reference: 16 (K.4)

Comment: The proposed project is a fire station that would neither require the construction of nor expansion of neighborhood parks or regional recreational facilities.

- b) Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment? □ □ □ ☒

Reference: 16 (K.4)

Comment: Please see response to Item 15 a) above.

16. TRANSPORTATION/TRAFFIC –

Would the project:

- a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)? □ □ □ ☒

Reference: 2, 13, 16 (L.1 to L.4, L.8), 22

Comment: The City of Los Angeles’ CEQA Threshold Guide has established a set of significance thresholds to determine if a project has significant in-street construction impacts.

Temporary Traffic Impacts. The determination of significance regarding temporary traffic impacts is made considering the length of time of temporary street closures or closures of two or more traffic lanes, the classification of the street affected, the existing traffic levels and level of service (LOS) on the affected street segments and intersections, whether the affected street directly leads to a freeway on- or off-ramp or other state highway, potential safety issues involved with street or lane closures, and the presence of emergency services located nearby that regularly use the affected street.

Temporary Loss of Access. The determination of significance regarding temporary loss of access is made considering the length of time of any loss of vehicular or pedestrian access to a parcel fronting the construction area, the availability of alternative vehicular or pedestrian access within ¼ mile of the project site.
lost access, and the type of land uses affected, and related safety, convenience, and/or economic issues.

Temporary Loss of Bus Stops or Rerouting of Bus Lines. The determination of significance regarding temporary loss of bus stops or rerouting of bus lines is made considering the length of time that an existing bus stop would be unavailable or that existing service would be interrupted, the availability of a nearby location (with ¼ mile) to which the bus stop or route can be temporarily relocated, the existence of other bus stops or routes with similar routes/destinations with a ¼ mile radius of the affected stops or routes, and whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service during that/those day(s).

Temporary Loss of On-Street Parking. The determination of significance regarding temporary loss of on-street parking is made considering the current utilization of existing on-street parking, the availability of alternative parking locations or public transit options (e.g. bus, train) within ¼ mile of the project site, and the length of time that existing parking spaces would be unavailable.

A significant impact may occur if the proposed project causes an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system.

Response: Using the specified significant impact criteria, the traffic impacts at the analysis locations were determined. Based on the anticipated worst case construction phase (excavation and grading), it is estimated that 60 daily trips would occur during the construction (20 worker trips and 40 truck trips). Because trucks are larger than passenger vehicles, the truck trips were converted to passenger car equivalents (PCE). One truck trip is equal to 2.5 PCEs, so the truck trips are equivalent to 100 passenger cars trips. With the PCE conversion, it is estimated that the worst-case construction phase would generate approximately 120 daily trips (20 worker trips and 100 PCE truck trips), of which 18 trips would occur during the morning peak hour and 18 trips during the evening peak hour. Table 7 of Appendix B (Traffic Report) identifies the individual construction-related impacts during both the morning and evening peak hours at all analyses locations and determines that none of the analyzed locations would be significantly impacted by the traffic associated with the construction activity of the proposed project. Therefore, no traffic-related mitigation measures would be required for the proposed project.

The proposed project consisting of a two-story, 15,500 square-foot fire station that is estimated to generate considerably less operational trips than trips generated for the phases of construction. During operation, assigned station staff would generate a total of approximately 7 trips during the morning peak hour every third day. No appreciable effect due to the operation of the proposed project is anticipated (see Appendix B). Therefore, none of the analyzed locations would be significantly impacted by the operation of the
<table>
<thead>
<tr>
<th>Issues</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
</table>

proposed Fire Station Project and no mitigation measures would be required

b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?

Reference: 2, 13, 16 (L.1 to L.4, L.8), 22

Comment: A significant impact may occur if project-related traffic causes an increase in the Volume/Capacity (V/C) ratio on intersection operating conditions as indicated by the following:

- V/C ratio increase ≥0.040 if final LOS* is C
- V/C ratio increase ≥0.020 if final LOS* is D
- V/C ratio increase ≥0.010 if final LOS* is E or F

*Final Level of Service (LOS) is defined as projected future conditions including project, ambient, and related project growth without project traffic mitigation.

A traffic analysis of the proposed project’s potential to impact identified intersection and street segments is presented in Appendix B which concludes the proposed project would have no impact on existing or projected traffic flow.

The traffic analysis in 16.a) above include background traffic growth and is therefore a cumulative traffic analysis. All of the analyzed locations are projected to operate at LOS D or better during both the morning and evening peak hours with the addition of construction-related traffic, and none would result in a V/C ratio increase above 0.020. Significant cumulative impacts are not anticipated.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

Reference: 2, 13, 25

Comment: A significant impact may occur if the proposed project changed air traffic patterns, including either an increase in traffic levels or a change in location that resulted in substantial safety risks.

The proposed project would have no impact on air traffic patterns.
Issues

| d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? |
|---|---|---|---|---|
| | | | X | |

Reference: 16 (L.5), 22
Comment: A significant impact may occur if the proposed project resulted in more than 500 daily trips and it be readily perceived that there are access risks or deficiencies associated with the adjoining street system due to curves, slopes, walls or other barriers to adequate lines of sight.

The proposed project would not generate substantial traffic, and would not block the line of sight of vehicles traveling along Plummer Street. Therefore, the project would not result in increased traffic hazards. See response to Item 16 a) above.

| e) Result in inadequate emergency access? |
|---|---|---|---|---|
| | | | X | |

Reference: 16 (L.5, L.8)
Comment: The proposed project would improve the existing vacant site with a modern fire station designed to facilitate emergency fire protection response to the surrounding community. The proposed project would not affect access to other structures in the surrounding community.

| f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)? |
|---|---|---|---|---|
| | | | X | |

Reference: 13, 22
Comment: A significant impact may occur if the proposed project conflicts with adopted policies, plans, or programs supporting alternative transportation.

The proposed project would not interfere with any adopted policies, plans or programs supporting alternative transportation. Four bus lines operated by the Los Angeles County Metropolitan Authority (MTA) currently serve the study area. MTA Line 17 has stops located along Plummer Street and Bus Lines 233, 761, and 902 have stops along Van Nuys in the vicinity of the proposed project. No temporary loss of bus stops or rerouting would be required for construction or operation of the proposed project. See also Appendix B.

16. UTILITIES AND SERVICE SYSTEMS – Would the project:

| a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? |
|---|---|---|---|---|
| | | | X | |

Reference: 16 (M.2)
Comment: A significant impact may occur if the proposed project exceeds
wastewater treatment requirements of the local regulatory governing agency.

The proposed project would generate wastewater from personnel sanitary, food preparation, and equipment cleaning activities. The project design includes grease separation facilities and the site’s effluent would be discharged to the local sanitary sewer system and can be accommodated by the existing wastewater conveyance, treatment, and discharge system without need of alteration or modification.

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Reference: 16 (M.1 and M.2)

Comment: A significant impact may occur if the proposed project resulted in the need for new construction or expansion of water or wastewater treatment facilities that could result in an adverse environmental effect that could not be mitigated.

The proposed project would not require the development of expansion of new wastewater treatment facilities.

c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Reference: 16 (M.2)

Comment: A significant impact may occur if the volume of storm water runoff from the proposed project increases to a level exceeding the capacity of the storm drain system serving the project site.

The existing storm water collection and conveyance systems, currently serving the proposed project site, are adequate to accommodate the minor additional contribution from the improved project site.

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

Reference: 16 (M.1)

Comment: A significant impact may occur if the proposed project’s water demands would exceed the existing water supplies that serve the site.

The proposed project site is provided potable water by the Los Angeles Department of Public Works (LADWP) and no new facilities would be required to meet the proposed project’s needs.
Issues

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Mitigation</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
</table>

e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

Reference: 16 (M.2)

Comment: A significant impact may occur if the proposed project would increase wastewater generation to such a degree that the capacity of facilities currently serving the project site would be exceeded.

See response to Item 17 d) above.

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?

Reference: 16 (M.3)

Comment: A significant impact may occur if the proposed project were to increase solid waste generation to a degree that existing and projected landfill capacities would be insufficient to accommodate the additional waste.

Most of the debris associated with site preparation has already been disposed of. The additional construction debris would consist of wasted materials which would be salvaged and reused to the maximum extent feasible.

g) Comply with federal, state, and local statutes and regulations related to solid waste?

Reference: 16 (M.3)

Comment: A significant impact may occur if the proposed project would generate solid waste that was in excess of or was not disposed of in accordance with applicable regulations.

The proposed project would not generate or dispose of solid waste that violates applicable regulations.

18. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Reference: 11, 13, 19, 21, 24
Comment: The proposed project would occur in a fully urbanized residential area on land that was, until recently, used to accommodate residential structures. As such, it does not contain significant biological resources, known cultural resources, or historical, archaeological resources. Paleontological resources are also not known to be present or expected to be encountered.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Reference: Preceding analysis.

Comment: The proposed project is construction and operation of a standard fire station on currently vacant parcels of land located at 14630–14666 Plummer Street in the Mission Hills-Panorama City-North Hills Community Plan area west of Van Nuys Boulevard. The proposed project site is surrounded by multi-family residential uses. There are no known related projects that could result in significant cumulative impacts to which the proposed project could contribute. Neither are any significant impacts expected as a result of the proposed project either on an individual or cumulative basis. As a consequence, the proposed project would not make a cumulatively considerable contribution to a significant cumulative impact.

c) Does the project have the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals?

Reference: Preceding analysis.

Comment: The goal of the proposed project is the enhancement of community safety that would extend from the commencement of operation until an unknown and unspecified point in time when the facility could be deemed obsolete. Several fire stations in the Los Angeles system have been in operation for 50-years or more. The project is the replacement of an existing Fire Station to provide continuing fire and life safety consistent with the City’s General Plan. No unavoidable adverse effects have been identified. Therefore long-term environmental goals will not be adversely affected.

d) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

Reference: 18, 20

Comment: The proposed project does not have potentially significant effects or impacts that would cause substantial adverse effects on human beings, either directly or indirectly.
V. ENVIRONMENTAL IMPACT EVALUATION

The proposed project consists of property acquisition and the construction of a new fire station facility on several vacant and undeveloped parcels of land located west of Van Nuys Boulevard at 14630-14666 Plummer Street in Panorama City. The proposed project will replace the existing Fire Station 7 facility, located at 14123 Nordhoff Street, and afford opportunity to transfer assigned staff and apparatus to the new location. The existing Fire Station No. 7 cannot house the additional resources needed to meet present and future demands for fire protection services. The new facility will consist of an approximately 15,500 square foot fire station and associated improvements, including upgrades to comply with seismic and building codes, Americans with Disabilities (ADA) codes, and separate gender facilities.

Prior to construction, the City would acquire the property for the new facility. Following assumption of full operational status at the proposed project location, the existing Fire Station No. 7 will be turned over to the City’s General Services Administration until its final disposition is determined.

Implementation of the proposed project is not anticipated to generate any significant adverse effect.

VI. MITIGATION MEASURES

The proposed project is not expected to generate any adverse effects; therefore, mitigation measures are neither warranted nor proposed.

VII. PREPARATION AND COORDINATION/CONSULTATION

A. Prepared by:

Wallace E. Stokes III
Spectrum II

Louis Utsumi
EnviCraft LLC
B. Coordination/consultation with:

Catalina Hernandez
Environmental Specialist II
Environmental Management Group
Bureau of Engineering
Department of Public Works

Reza Shahmirzadi
Project Manager
Fire Facilities Bond Program
Bureau of Engineering
Department of Public Works

Curt Klafta
Fire Battalion Chief
Los Angeles Fire Department

W. Patrick Valenzuela
Captain II
Los Angeles Fire Department

Traffic & Circulation
Srinath Raju, P.E.
Christopher Muñoz
Raju Associates, Inc

Air Quality
John Castleberry
Castle Environmental Consulting, LLC

Phase 1 ESA
John Jay Roberts, PG, CEG
Ninyo & Moore Geotechnical and Environmental Consultants
VIII. DETERMINATION - RECOMMENDED ENVIRONMENTAL DOCUMENTATION

A. Summary

The proposed project consists of the acquisition of five currently vacant parcels of land and the construction of a new approximately 15,500 square foot standard fire station to replace the existing sub-standard and outdated Arleta Fire Station No.7. The proposed project site is currently zoned for residential use and development for use as a Fire Station may require a zoning change.

Construction of the proposed project would not involve demolition as the project site was razed by a previous owner. Construction is currently estimated to require two years and the most intense construction period would involve minor rough and fine grading and generate approximately 400 truck trips, distributed over a two-month period, would be required for the export of soils. The operation of construction equipment, export of soils, import of building materials, and daily transport of construction workers would not rise to levels of significance as stipulated by the City’s Department of Transportation or AQMD.

Construction activities would be scheduled to conform to applicable portions the City’s Noise Ordinance and significant disturbance is not anticipated. Operation of the proposed project would involve temporary ambient noise elevation as station personnel respond to various emergencies; however, these occasions and disturbance levels would be similar to that experienced by neighbors of many of the City’s Fire Stations, which are situated in residential areas.

Construction and operation of the proposed project would not generate significant impacts and mitigation measures are neither recommended nor proposed.
B. **Recommended Environmental Documentation**

On the basis of this initial evaluation, I find that the proposed project could not have a significant effect on the environment, and a **Negative Declaration** should be adopted.

Prepared By:
Wallace E. Stokes
Spectrum II

Reviewed By:
Catalina Hernandez
Environmental Specialist II

Approved By:
Jim E. Doty, Acting Manager
Environmental Management Group

[WES/LTU: Final North Valley FS 7_10-17-11.doc]
REFERENCES:

Sources of information that adequately support findings of no significant impact are referenced by number in parentheses following each question in Section III. All sources so referenced are cited below and are available by appointment for review at the offices of the Bureau of Engineering, 1149 South Broadway, Suite 600, Los Angeles. Answers to other questions are discussed below each numbered section.

4. *California Code of Regulations*, Section 15064.5 “Determining the Significance of Impacts to Archeological and Historical Resources.”

19. Records Search for the Arleta Fire Station No.7 Project. May 17, 2011. South Central Coastal Information Center; SCIC #11491.8163

20. Air Quality Report, North Valley Fire Station No. 7, September 13, 2011. Castle Environmental Consulting LLC.

23. Phase I Environmental Site Assessment 14630-14666 Plummer Street, Arleta, California, Ninyo & Moore, June 15, 2011.

Appendix A

Air Quality Report
Contents
1. Introduction ...2
2. Construction Emissions ...3
3. Operational Emissions ..4
4. Localized Significance Threshold Analysis6
5. References ..8
1. Introduction

This report assesses the air quality impacts associated with the proposed North Valley Fire Station No. 7 Project. The proposed project would replace the existing Arleta Fire Station No. 7, which is located at 14123 Nordhoff Street (approximately one mile away from the proposed new site) with a new Standard Fire/Paramedic Station on five contiguous vacant parcels situated at 14630 to 14666 West Plummer Street in Arleta.

The existing fire station includes a 2,355 square foot (SF) main building and 960 SF apparatus building situated on a 0.59-acre lot. It currently houses 4 firefighters and 2 paramedics. Assigned apparatus include 1 fire engine and 1 rescue vehicle.

The new facility would include a two-story, 15,300 SF building sited on a 1.9-acre lot (5 parcels). The new station would include three heavy and three light apparatus bays. At full capacity, it would normally house 6 to 7 personnel at any given time; occasionally, a 12-15 personnel task force would be assembled at the site. Assigned apparatus at full capacity would include 3 fire engines and 3 rescue vehicles.

The following air quality impacts are addressed for the proposed project:

- Criteria pollutant and greenhouse gas (GHG) emissions associated with proposed project construction
- Criteria pollutant and GHG emissions associated with proposed project operation
- Localized significance threshold (LST) analysis for proposed project construction and operation

Impacts are compared to significance thresholds published by the South Coast Air Quality Management District (SCAQMD, 2011).

The criteria pollutants included in this report are volatile organic compounds (VOC), nitrogen oxides (NOx), carbon monoxide (CO), sulfur oxides (SOx), particulate matter less than 10 microns (PM10), and particulate matter less than 2.5 microns (PM2.5). The GHGs included in this report are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).

GHGs have varying global warming potentials (GWPs)\(^1\). The GWP is the ability of a gas to trap heat in the atmosphere. By convention, CO2 is assigned a GWP of 1. By comparison, CH4 has a GWP of 21, which means that it has 21 times the global warming effect as CO2 on an equal-mass basis. N2O has a GWP of 310, which means that it has 310 times the global warming effect as CO2 on an equal-mass basis. In this report, GHG emissions are presented as a carbon dioxide equivalent (CO2e). The CO2e is calculated by multiplying the emission of each gas by its GWP.

\(^1\) This report uses the GWPs from the Intergovernmental Panel on Climate Change’s (IPCC’s) Second Annual Report (IPCC, 1995).
and adding the results together to produce a single, combined emission rate representing all GHGs. The GHG emissions in this report are reported in units of metric tons. A metric ton is equivalent to 1.1 U.S. (short) tons or 2,205 pounds.

2. Construction Emissions

Construction of the proposed project would be accomplished over a two-year period scheduled to commence in the third quarter of 2012 and be completed in the third quarter of 2014. The construction phases include:

- Site clearing
- Excavation/earthwork
- Foundation, pad, and building construction
- Landscaping and off-site improvements

Construction emissions were calculated using the SCAQMD’s new land use emissions model, CalEEMOD, version 2011.1.1 (SCAQMD, 2011b). CalEEMod calculated peak daily emissions for criteria pollutants and annual emissions for GHGs. The following project-specific activity data were used in the calculations:

- During excavation/earthwork, 8,000 cubic yards of soil would be exported by truck over a one-month period.

- During excavation/earthwork, the off-road construction equipment would include 1 loader, 1 backhoe/loader, 1 compactor/roller, and 1 water truck.

- During site clearing and excavation/earthwork, the equivalent of 0.5 acres would be actively disturbed on a daily basis. This assumption is based on Appendix A of the CalEEMod User’s Guide, which lists an expected disturbance of 0.5 acres per 8-hour day for graders, crawler tractors, and rubber tired dozers (SCAQMD, 2011b).

- During site grading (part of the excavation/earthwork phase), a fugitive dust control efficiency of 61 percent was applied to simulate three times-per-day watering in compliance with SCAQMD Rule 403, Fugitive Dust. Although treated as mitigation in CalEEMod, this control measure would be a required element of the proposed project.

CalEEMod default assumptions were used for other construction activity data. The CalEEMod printouts are included in Appendix A.

Table 1 presents the peak daily criteria pollutant and annual GHG emissions associated with construction of the proposed project. The emissions are compared to the SCAQMD air quality significance thresholds, which are a regional measure of air quality significance in the South Coast Air Basin. Emissions equal to or greater than the thresholds are considered a significant impact on regional air quality.
The peak daily construction emissions in Table 1 are well below the thresholds, and therefore less than significant, for all criteria pollutants. There is currently no SCAQMD significance threshold for CO₂ emissions during project construction.

Table 1. Emissions Associated with Construction of the Proposed Fire Station

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Peak Daily Emissions (lb/day)</th>
<th>Annual CO₂-e Emissions (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road Construction Equipment</td>
<td>0.5 48.7 24.6 0.1 2.5 2.5</td>
<td>304.2</td>
</tr>
<tr>
<td>On-Road Trucks</td>
<td>0.0 24.6 14.6 0.03 1.1 1.1</td>
<td>12.0</td>
</tr>
<tr>
<td>Worker Trips</td>
<td>0.01 0.1 1.1 0.0 0.01 0.01</td>
<td>7.2</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.0 0.0 0.0 0.0 20.7 1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>16.9 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Project Emissions</td>
<td>17.3 73.4 40.3 0.1 24.2 4.6</td>
<td>323.4</td>
</tr>
</tbody>
</table>

Significance Thresholds: 75 100 550 150 150 55 --
Significant? No No No No No No --

Notes:
1. Emissions include both on-site and off-site emissions.
2. Fugitive dust includes earthmoving-generated dust, re-entrained road dust, tire wear, and brake wear.
3. A fugitive dust control efficiency of 61 percent was applied to site grading in CalEEMod to simulate three times-per-day watering in compliance with SCAQMD Rule 403 (Fugitive Dust Rule). Although treated as “mitigation” in CalEEMod, this control measure would be a required element of the proposed project.
4. The SCAQMD has not established a significance threshold for CO₂-e construction emissions.
5. MT/yr is metric tons per year. One metric ton = 1,000 kg = 2,205 lb = 1.1 short tons.
6. Significance is determined by comparing the total construction emissions to the thresholds. Because there were no baseline construction emissions, the total construction emissions are equivalent to the project increment emissions.

3. Operational Emissions

Proposed project operational emissions were calculated assuming the new fire station would conservatively operate at full capacity in its opening year of 2014. Operational emissions were also calculated for the existing fire station in 2011, which is the CEQA baseline. The net change in emissions associated with proposed project operations, therefore, is the proposed project emissions minus the baseline emissions. The resulting project increment emissions are compared to the SCAQMD air quality significance thresholds.

Operational emissions were also calculated using CalEEMOD, version 2011.1.1. CalEEMOD calculated peak daily emissions for criteria pollutants and annual emissions for GHGs. The following project-specific activity data assumptions were used in the peak day calculations:

- The existing fire station would have a shift change (6 workers arriving and 6 workers departing) on a peak day. The proposed new fire station would have a shift change (7 workers arriving and 7 workers departing) plus 8 additional personnel (bringing the total to 15 personnel) arriving and departing for task force duty on a peak day.
• For the existing fire station, the fire engine and rescue vehicle would each make 20 round trips (for a total of 40 round trips) on a peak day. For the proposed new fire station, each of the 3 fire engines and 3 rescue vehicles would make 10 round trips (for a total of 60 round trips) on a peak day. The average one-way trip distance is 4 miles for both the existing and proposed new fire stations (L.A.F.D. 2011).

• For the existing fire station, the fire engine and rescue vehicle would each idle on-site for 10 minutes on a peak day. For the proposed new fire station, one of the fire engines and each of the 3 rescue vehicles would idle on-site for 10 minutes on a peak day. Each of the remaining 2 fire engines would idle on-site for 5 minutes on a peak day (L.A.F.D. 2011).

CalEEMod default assumptions were used for other operational activity data. Because they have a unique vehicle fleet mix, it was necessary to calculate fire truck and rescue vehicle trip emissions in separate CalEEMod runs from the other project emission sources. In addition, separate manual calculations were performed for on-site fire truck and rescue vehicle idling emissions, as vehicle idling times cannot be manually adjusted in CalEEMod. The CalEEMod printouts are included in Appendix A. The on-site idling emission calculations are included in Appendix B.

Table 2 presents the peak daily criteria pollutant and annual GHG emissions associated with operation of the existing fire station (CEQA baseline).

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Peak Daily Emissions (lb/day)</th>
<th>Annual CO\textsubscript{2}e Emissions (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>NO\textsubscript{x}</td>
</tr>
<tr>
<td>Fire Truck and Rescue Vehicle Trips</td>
<td>1.13</td>
<td>10.14</td>
</tr>
<tr>
<td>Fire Truck and Rescue Vehicle On-Site Idling</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Worker Trips</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Electricity Consumption</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Solid Waste Decomposition</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>1.29</td>
<td>10.34</td>
</tr>
</tbody>
</table>

Notes:
1. Emissions include both on-site and off-site emissions.
2. Fugitive dust includes re-entrained road dust, tire wear, and brake wear.
3. Annual CO\textsubscript{2}e emissions assume peak day activity 365 days per year.
4. Electricity consumption includes electricity consumed on-site and electricity required for water supply.
5. Criteria pollutant emissions include only direct emissions, and therefore are zero for electricity consumption and solid waste decomposition. Because CO\textsubscript{2}e emissions have a global impact, both direct and indirect emissions are included.
6. MT/yr is metric tons per year. One metric ton = 1,000 kg = 2,205 lb = 1.1 short tons.
Table 3 presents the peak daily criteria pollutant and annual GHG emissions associated with operation of the proposed new fire station (proposed project). The incremental emissions (proposed project minus baseline) are compared to the SCAQMD air quality significance thresholds. Emissions equal to or greater than the thresholds are considered a significant impact on regional air quality.

The peak daily project increment emissions in Table 3 are well below the thresholds, and therefore less than significant, for all criteria pollutants. Similarly, the annual CO₂e emission rate is well below the threshold, and therefore is less than significant.

Table 3. Emissions Associated with Operation of the Proposed Fire Station

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Peak Daily Emissions (lb/day)</th>
<th>Annual CO₂e Emissions (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>NOₓ</td>
</tr>
<tr>
<td>Fire Truck and Rescue Vehicle Trips</td>
<td>1.27</td>
<td>11.99</td>
</tr>
<tr>
<td>Fire Truck and Rescue Vehicle On-Site Idling</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Worker Trips</td>
<td>0.16</td>
<td>0.38</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Electricity Consumption</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Solid Waste Decomposition</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Project Emissions</td>
<td>1.83</td>
<td>12.43</td>
</tr>
<tr>
<td>Baseline Emissions</td>
<td>1.29</td>
<td>10.34</td>
</tr>
<tr>
<td>Project Increment Emissions</td>
<td>0.54</td>
<td>2.09</td>
</tr>
<tr>
<td>Significance Thresholds</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

Significant? No No No No No No No No

Notes:
1. Emissions include both on-site and off-site emissions.
2. Fugitive dust includes re-entrained road dust, tire wear, and brake wear.
3. Annual CO₂e emissions conservatively assume peak day activity 365 days per year.
4. Electricity consumption includes electricity consumed on-site and electricity required for water supply.
5. Criteria pollutant emissions include only direct emissions, and therefore are zero for electricity consumption and solid waste decomposition. Because CO₂e emissions have a global impact, both direct and indirect emissions are included.
6. MT/yr is metric tons per year. One metric ton = 1,000 kg = 2,205 lb = 1.1 short tons.
7. The project increment emissions represent project emissions minus baseline emissions. Significance is determined by comparing the project increment emissions to the thresholds.

4. Localized Significance Threshold Analysis

The proposed project’s construction and operational emissions were also compared to the SCAQMD screening-level Localized Significance Thresholds (LSTs), which assess a project’s localized impact on ambient air quality concentrations at nearby receptors such as residences or workplaces (SCAQMD, 2009). A project’s allowable emissions depend on the project site acreage and proximity to receptors. The SCAQMD prepared a series of LST lookup tables for
hypothesized project sites ranging from 1 to 5 acres and receptor distances ranging from 25 to 500 meters. For this analysis, the most representative lookup tables were used, which represent a 2-acre site and a receptor distance of up to 25 meters. Emissions equal to or less than the LSTs are considered a less than significant impact on local air quality.

Table 4 compares the proposed project’s peak daily on-site construction and operational emissions to the SCAQMD LSTs. The emissions in Table 4 are limited to on-site emissions because the LST analysis examines the potential for localized impacts in close proximity to the project site. For the LST analysis, CEQA baseline operational emissions associated with the existing fire station were not subtracted from the proposed project operational emissions because their respective localized impacts would occur at different locations and therefore would not overlap.

As shown in Table 4, the proposed project’s peak daily on-site emissions would be less than the LSTs for all pollutants, for both construction and operation. Therefore, the proposed project’s impacts on local ambient air pollutant concentrations would be less than significant.

Table 4. Localized Significance Threshold (LST) Analysis for the Proposed Fire Station

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Emission Source</th>
<th>Peak Daily On-Site Emissions (lb/day)</th>
<th>NOx</th>
<th>CO</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Off-Road Equipment</td>
<td>48.7</td>
<td>24.6</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fugitive Dust</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total On-Site Construction Emissions</td>
<td>48.7</td>
<td>24.6</td>
<td>4.3</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LST Construction Thresholds</td>
<td>114</td>
<td>786</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds Exceeded?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Fire Truck and Rescue Vehicle On-Site Idling</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0002</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural Gas Combustion</td>
<td>0.04</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total On-Site Operational Emissions</td>
<td>0.06</td>
<td>0.05</td>
<td>0.0002</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LST Operation Thresholds</td>
<td>114</td>
<td>786</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds Exceeded?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The LST thresholds were developed by the SCAQMD by modeling a hypothetical project site and assessing the potential for on-site emissions to generate a local significant ambient concentration impact. Therefore, this table includes only on-site emissions.
2. The LST lookup tables correspond to a 2-acre site and a receptor distance of up to 25 meters for Source-Receptor Area 7 (east San Fernando Valley).
3. The SCAQMD has not established an LST for VOC, SOx, or CO2e.
4. A fugitive dust control efficiency of 61 percent was applied to site grading in CalEEMod to simulate three times-per-day watering in compliance with SCAQMD Rule 403 (Fugitive Dust Rule). Although treated as "mitigation" in CalEEMod, this control measure would be a required element of the proposed project.
5. References

Appendix B

Traffic Report
TECHNICAL MEMORANDUM

TO: Mr. Louis Utsumi, EnviCraft, LLC.
CC: Ms. Maria Martin, LADPW, BoE

FROM: Srinath Raju, P.E.
 Christopher Muñoz

SUBJECT: North Valley Fire Station No. 7 Project Traffic Study

DATE: September 7, 2011

This technical memorandum documents the analysis and evaluation of traffic conditions associated with the proposed North Valley Fire Station No. 7 Project. The traffic study for this Project evaluates the effects of the construction-related activities associated with the various components of the Proposed Project on the vehicular, parking, and pedestrian access/circulation system in the vicinity of the Project.

The traffic analysis for this study uses a methodology that is consistent with the City of Los Angeles Traffic Study Guidelines and L.A. CEQA Thresholds Guide, 2006. The scope and geographic coverage as well as the key assumptions and parameters for this study are consistent with projects of this nature. Details of the traffic and parking evaluations are provided in the following sections of this document.

BACKGROUND

The Proposed Project would replace the existing Arleta Fire Station No.7, located at 14123 Nordhoff Street, with a new Standard Fire/Paramedic Station located along Plummer Street. The new Fire Station would be located on several currently vacant parcels of land west of Van Nuys Boulevard at 14630-14666 Plummer Street in the Mission Hills-Panorama City-North Hills Community Plan Area of the City of Los Angeles. Figure 1 illustrates the location of the Proposed Project in relation to the surrounding street system.
FIGURE 1
LOCATION OF PROJECT AND ANALYZED LOCATIONS
The Proposed Project is one of nine existing fire stations to be replaced with new standard Fire/Paramedic Stations under Proposition F. Proposition F authorized the issuance of $532.6 million in General Obligation Bonds to finance the construction and rehabilitation of Fire Stations and Animal Shelters throughout the City of Los Angeles. In 1998, the City of Los Angeles completed a Public Safety Facilities Master Plan Study. This study determined that most of the City's existing fire stations were too small to adequately house the equipment and personnel needed for efficient deployment of resources. It also determined that most of the stations failed to meet current Building and Safety Codes, particularly seismic design requirements. In order to mitigate and partially remedy these issues, Proposition F was placed on the ballot and approved by Los Angeles voters on November 7, 2000.

PROJECT DESCRIPTION

The existing Arleta Fire Station is approximately 2,355 square feet in size, including a 2,235 square-foot main building and a 960 square-foot apparatus building, situated on a 25,658 square-foot lot. The existing facility does not meet current design or functional standards for a “standard type” fire station and the current site is too small to accommodate a replacement fire station or retrofit of the existing one. The proposed new facility includes a two-story, state of the art, 15,300 square-foot building on a 1.9 acre lot. This new station would include three heavy and three light apparatus bays, as well as an on-site diesel fueling station. The site would be enclosed by an 8 foot perimeter wall. The Proposed Project site plan is shown Figure 2.

The existing Fire Station No. 7 currently houses four firefighters, two paramedics and includes one fire engine and one rescue vehicle. Other apparatus/vehicles may be temporarily located on site as directed by system management. The new fire station will initially house the same number of assigned staff and apparatus as the existing station. The new facility, however, would have the capacity to ultimately accommodate up to three heavy and three light apparatus vehicles and 18 firefighting/paramedic personnel. Only 6-7 personnel will be present at the site at any given time, with an occasional 12-15 people attending a task force meeting, if assembled, at the site.

The existing Fire Station No. 7 firefighting and rescue staff is divided into three 24-hour on-duty platoons. This staffing pattern would be maintained at the new replacement facility. Shift changes at all City of Los Angeles Fire Stations take place at 8:00 A.M. every third day.
All parking for assigned personnel would be provided on site. Ingress/egress would be from Plummer Street. The on-site traffic flow would be configured to allow pull-through of returning apparatus and positioning for exit directly to the street and warning lights may be required to stop traffic on Plummer Street. Backing of apparatus from Plummer Avenue into the station would not be required.

Construction of the Proposed Project would be accomplished over two-year period scheduled to commence in 2012 and completed in 2014. During this period, it is anticipated that parking, which is now unrestricted on the south side of Plummer Street in the vicinity of the Proposed Project construction site, would be temporarily restricted. In addition, construction equipment would access the site via Plummer Street. A description of the general construction activities/phases follows. It is worth noting that none of the construction phases would overlap.

• **Site Clearing** - The Proposed Project site has been razed and is devoid of structures. A minor quantity of demolition debris, consisting of broken concrete (comprising no more than two truckloads) remains and will require export. This phase will export the remaining debris from the site.

• **Excavation/Earthwork** - Following site clearing, the Project site would be graded to meet design specifications and to accommodate site drainage requirements. The site is expected to be graded such that the site elevation is the same as the sidewalk along Plummer Street but slightly elevated at the south end. As part of the grading process, soil would be balanced on-site to the extent possible, and the soil compacted to design specifications. Up to 8,000 cubic yards of soil could be removed, which would require approximately 400 haul trips over a one-month period. The grading and excavation phase of the Project is expected to generate the most construction traffic and use the most equipment. Equipment during this phase would include the following:
 - 1 loader
 - 1 backhoe/loader
 - 1 compactor/roller
 - 1 water truck
 - Dump trucks for hauling
 - 10 workers

• **Building Foundation and Pad Construction** - Following grading, the building foundation and concrete pads for other elements of the fire station site would be constructed in accordance with design recommendations in the Geotechnical Plans and the Building Code. Foundations may include caissons or other foundation structures. Excavation for and placement of necessary utility lines would also be accomplished in this phase.

• **Building Structure** - Once foundations are constructed, building construction would commence. The structure could include concrete block or cast-in-place construction. Once the structure is erected, interior improvements would be made, including
necessary ventilation and control equipment. Utilities would be connected as needed. This phase would also include the perimeter wall.

- **Landscaping and Off-Site Improvements** - Construction activities associated with this phase of work include the placement of landscaping materials in accordance with design specifications. Off-site improvements would include the placement of a sidewalk and other facilities needed to make the station public areas ADA compliant.

From a traffic perspective, it is anticipated that the Excavation/Earthwork Phase of Construction would generate the greatest amount of construction-related peak hour trips amongst the phases of construction. These trips and their effects are discussed further in subsequent sections of this study.

STUDY SCOPE

The scope of work for this study was developed in accordance with the City of Los Angeles Traffic Study Guidelines and the L.A. CEQA Guidelines, 2006. The base assumptions, technical methodologies and geographic coverage of the study were all identified as part of the study approach. The study is directed at the analysis of potential traffic impacts produced by the Proposed Project on the street system and includes an analysis of the following scenarios:

- **Existing (2011) Conditions** - The analysis of existing traffic conditions is intended to provide a basis for the remainder of the study. The existing conditions analysis includes an assessment of streets, traffic volumes, and operating conditions.

- **Future Cumulative Base (Year 2014 without Project – Pre-Construction) Conditions** – Future traffic conditions without the Proposed Project (pre-construction) has been developed for the year 2014. The objective of this analysis is to project future traffic growth and operating conditions, which could be expected to result from regional growth as well as cumulative related projects, if any, in the vicinity of the study area by the year 2014. The effects of other construction projects in the area are included in this baseline scenario.

- **Future Cumulative (Year 2014) with Construction Activity Conditions** – The traffic expected to be generated by the construction of the Proposed Project is estimated and added to the Future Year 2014 without Project traffic forecasts. The traffic impacts of the construction of the Proposed Project on future traffic operating conditions are then identified. Mitigation measures, if required, are then identified.
For this traffic evaluation, one intersection and one street segment location were identified for analysis. The locations listed below and shown in Figure 1 were analyzed for the scenarios described on the previous page:

1. Van Nuys Boulevard and Plummer Street (signalized intersection)
2. Plummer Street between Cedros Avenue and Van Nuys Boulevard (roadway segment)

SIGNIFICANT IMPACT THRESHOLD

The City of Los Angeles’ CEQA Threshold Guide has established a set of significance thresholds to determine if a project has significant in-street construction impacts. The determination of significance is made considering the following factors:

Temporary Traffic Impacts

- The length of time of temporary street closures or closures of two or more traffic lanes;
- The classification of the street affected;
- The existing traffic levels and level of service (LOS) on the affected street segments and intersections;
- Whether the affected street directly leads to a freeway on- or off-ramp or other state highway;
- Potential safety issues involved with street or lane closures; and
- The presence of emergency services located nearby that regularly use the affected street.

Temporary Loss of Access

- The length of time of any loss of vehicular or pedestrian access to a parcel fronting the construction area;
- The availability of alternative vehicular or pedestrian access within ¼ mile of the lost access; and
- The type of land uses affected, and related safety, convenience, and/or economic issues.

Temporary Loss of Bus Stops or Rerouting of Bus Lines

- The length of time that an existing bus stop would be unavailable or that existing service would be interrupted;
- The availability of a nearby location (with ¼ mile) to which the bus stop or route can be temporarily relocated;
- The existence of other bus stops or routes with similar routes/destinations with a ¼ mile radius of the affected stops or routes; and
- Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service during that/those day(s).
Temporary Loss of On-Street Parking

- The current utilization of existing on-street parking;
- The availability of alternative parking locations or public transit options (e.g. bus, train) within ¼ mile of the project site; and
- The length of time that existing parking spaces would be unavailable.

Methodology to Determine Significance

Per the L.A. CEQA Threshold Guide, the physical setting should be described including the classification of adjacent streets, on-street parking conditions in the immediate vicinity of the construction project, a description of the land uses affected by construction, and an inventory of existing bus stops and transit lines within a ¼ mile radius of the construction site. Street segment operating conditions are to be evaluated to determine construction impacts.

Project impacts are based on a review of proposed construction procedures/plans to determine whether construction activity within the street right-of-way would require any of the following:

- Street or lane closures;
- Block existing vehicle or pedestrian access to parcels fronting the street;
- Closure or movement of an existing bus stop or rerouting an existing bus line;
- Removal of existing, heavily used, on-street parking spaces; or
- Creation of traffic hazards.

The results are to be compared to the significance factors to determine the level of impact. Safety and economic concerns, existing traffic levels, as well as congestion impacts should be considered.

Both intersection and street segment capacity analysis may be used to determine whether street construction would result in significant impacts on the LOS. Project impacts would be determined by comparing both the intersection and street segment LOS for pre-construction and construction conditions.
EXISTING CONDITIONS

A comprehensive data collection effort was undertaken to develop a detailed description of existing conditions within the study area. The assessment of conditions relevant to this study includes an inventory of the street system, traffic volumes on these facilities, and operating conditions. A detailed description of these elements is presented in this section.

Study Area

The Proposed Project would replace the existing Arleta Fire Station No.7, which is located at 14123 Nordhoff Street, with a new Standard Fire/Paramedic Station. The new Fire Station would be located on several currently vacant parcels of land west of Van Nuys Boulevard at 14630-14666 Plummer Street in the Mission Hills-Panorama City-North Hills Community Plan Area of the City of Los Angeles.

The Project site is located 1.25 miles east of the San Diego (I-405) Freeway and 1.25 miles west of the Golden State (I-5) Freeway. The study area includes Plummer Street bounded by Cedros Avenue on the west and Van Nuys Boulevard on the east.

Existing Street System

The existing street system within the study area consists of a regional highway system including major arterials and a local street system including secondary arterials, collectors and local streets. The San Diego (I-405) Freeway and Golden State (I-5) Freeway provide the primary regional access to the study area. Brief descriptions of the major and other arterial streets used to access the study are included in the following section. The existing lane configurations are included in Appendix A.

- **Plummer Street** – Plummer Street is a secondary arterial roadway that traverses in an east-west direction and defines the northern frontage of the Project site. This roadway generally offers four travel lanes, two lanes per direction with a central left-turn lane/median. On-street parking is generally allowed along this roadway within the study area. The posted speed limit is 35 miles per hour.

- **Van Nuys Boulevard** – Van Nuys Boulevard is classified as a class II major highway that traverses in a north-south direction within the study area. This roadway also provides four travel lanes, two lanes in each direction with a central left-turn lane/median.
Within the study area, on-street parking is generally allowed along this roadway. The posted speed limit is 35 miles per hour. This roadway provides connections to the Golden State (I-5) Freeway and Ventura (US-101) Freeway.

- **Cedros Avenue** – Cedros Avenue is classified as a collector street that runs in a north-south direction. Cedros Avenue generally offers two travel lanes, one lane in each direction. Within the study area, this roadway is undivided and does not have sidewalks or curbs. On-street parking is limited along this roadway. The speed limit is 25 miles per hour. This roadway connects with Plummer Street at an unsignalized intersection, west of the Project site.

Existing Traffic Volumes

Weekday peak hour counts and 24-hour traffic counts were compiled from data collected at the analyzed intersection and street segment in May 2011. These traffic volumes reflect typical weekday operations during current year 2011 conditions. The traffic volumes in Figure 3 represent, for the purposes of this analysis, the Existing 2011 conditions. The raw data showing the counts are attached in Appendix B.

Level of Service Methodology

Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overloaded conditions at LOS F. LOS D is typically recognized as the minimum acceptable level of service in urban areas. LOS definitions for signalized intersections and arterial street segments are provided in Tables 1 and 2, respectively.

The "Critical Movement Analysis-Planning" (Transportation Research Board, 1980) method of intersection capacity analysis was used to determine the intersection volume to capacity (V/C) ratio and corresponding level of service at the signalized intersections. The CALCADB software package developed by LADOT was used to implement the CMA methodology. Table 1 defines the ranges of V/C ratios and corresponding levels of service for signalized intersections.

The signalized study intersection is currently controlled by the City of Los Angeles’ Automated Traffic Surveillance (ATSAC). A capacity increase of 7% (0.07 V/C adjustments) was applied to reflect the benefits of ATSAC control.

Peak hour roadway capacities are based on several parameters including number of lanes, median type, roadway width, parking conditions, speed and spacing of intersections. Based on the guidelines set forth in the *L.A. CEQA Threshold Guide*, for each street segment, the peak hour capacity...
FIGURE 3
EXISTING (2011) PEAK HOUR TRAFFIC VOLUMES

LEGEND:
XXX(XXX) - AM/PM PEAK HOUR TRAFFIC VOLUMES
ROUND TO THE NEAREST 5 VEHICLES
- PROJECT SITE
<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Volume/Capacity Ratio</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.000 - 0.600</td>
<td>EXCELLENT. No Vehicle waits longer than one red light and no approach phase is fully used.</td>
</tr>
<tr>
<td>B</td>
<td>>0.600 - 0.700</td>
<td>VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.</td>
</tr>
<tr>
<td>C</td>
<td>>0.700 - 0.800</td>
<td>GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.</td>
</tr>
<tr>
<td>D</td>
<td>>0.800 - 0.900</td>
<td>FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.</td>
</tr>
<tr>
<td>E</td>
<td>>0.900 - 1.000</td>
<td>POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.</td>
</tr>
<tr>
<td>F</td>
<td>> 1.000</td>
<td>FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.</td>
</tr>
</tbody>
</table>

TABLE 2
LEVEL OF SERVICE DEFINITIONS FOR ARTERIAL STREET SEGMENTS

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Volume/Capacity Ratio</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.000 - 0.600</td>
<td>EXCELLENT. Primarily free-flow conditions at about 90 percent of free-flow speed. Vehicles are completely free to maneuver within the traffic stream. Stopped delay at signalized intersections is minimal.</td>
</tr>
<tr>
<td>B</td>
<td>>0.600 - 0.700</td>
<td>VERY GOOD. Reasonably unimpeded flow at about 70 percent of free-flow speed. Ability to maneuver is only slightly restricted and delay at intersections is not bothersome.</td>
</tr>
<tr>
<td>C</td>
<td>>0.700 - 0.800</td>
<td>GOOD. Stable operations at about 50 percent of free-flow speed. Ability to maneuver and change lanes may be restricted at mid-block locations. Motorists will begin to experience appreciable tension while driving.</td>
</tr>
<tr>
<td>D</td>
<td>>0.800 - 0.900</td>
<td>FAIR. Small increases in flow begin to cause substantial increases in intersection approach delay. Ability to maneuver becomes more difficult, with speed about 40 percent of free-flow speed.</td>
</tr>
<tr>
<td>E</td>
<td>>0.900 - 1.000</td>
<td>POOR. Characterized by significant delays at intersection approaches and travel speeds about one-third of free-flow speed or less. Ability to maneuver is severely restricted and driver tension is high.</td>
</tr>
<tr>
<td>F</td>
<td>> 1.000</td>
<td>FAILURE. Extremely low travel speeds and unstable traffic flow. Characterized by long delays at intersection approaches, severe difficulty in maneuvering between lanes, and extremely high driver tension.</td>
</tr>
</tbody>
</table>

directional traffic volumes are divided by the directional street segment capacities to calculate volume-to-capacity (V/C) ratios. The V/C ratios are used to determine levels of service (LOS). Table 2 defines the ranges of V/C ratios and corresponding levels of service for street segments.

Existing Levels of Service

The existing traffic volumes were used in conjunction with the level of service methodologies described above to determine the existing operating conditions at the study locations.

Table 3 summarizes the results of the intersection and street segment capacity analysis for existing conditions at the study locations. The table presents the V/C ratios and the corresponding LOS for each study location. As indicated in the table, the study intersection and street segment are currently operating at LOS D or better during both morning and evening peak hours.

The capacity calculation worksheets for Existing (2011) conditions are provided in Appendix C.

Existing Transit Conditions

Four bus lines currently serve the study area. These bus lines are operated by the Los Angeles County Metropolitan Transportation Authority (MTA). These transit lines are described below:

- **MTA 167** - Line 167 is a local east/west line that provides service from Chatsworth to Studio City and travels primarily along Plummer Street within the study area. This line operates everyday, including holidays, at a frequency of approximately 30 minutes during peak commute hours. The western terminus is at the Chatsworth Station in Chatsworth. The eastern terminus is at the intersection of Goodland Avenue/Ventura Boulevard in Studio City. This bus line has bus stops at Cedros Avenue/Plummer Street and Van Nuys Boulevard/Plummer Street within the study area.

- **MTA 233** - Line 233 is a local north/south line that provides service from Lake View Terrace to Sherman Oaks and travels primarily along Van Nuys Boulevard within the study area. This line operates everyday, including holidays, at a frequency of approximately 18 minutes during peak commute periods. The northern terminus is at the intersection of Eldridge Avenue/Terra Bella Street in Lake View Terrace. The southern terminus is at the intersection of Van Nuys Boulevard/Moorpark Street in Sherman Oaks. This bus line has bus stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.

- **MTA 761** - Line 761 is a local north/south ‘Rapid Bus’ line that provides service from Pacoima to Westwood and travels primarily along Van Nuys Boulevard within the study area. This line operates everyday, including holidays, at a frequency of approximately 10 minutes. The northern terminus is at the intersection of Van Nuys Boulevard/Glenoaks
TABLE 3
SUMMARY OF EXISTING (2011) LEVEL OF SERVICE ANALYSIS

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V/C</td>
<td>LOS</td>
</tr>
<tr>
<td>1.</td>
<td>Van Nuys Boulevard & Plummer Street</td>
<td>0.689</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Street Segment</th>
<th>DIR</th>
<th>Peak Hour</th>
<th>Existing (2011) Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volumes</td>
<td>V/C</td>
</tr>
<tr>
<td>2.</td>
<td>Plummer Street between Cedros Avenue and Van Nuys Boulevard</td>
<td>EB</td>
<td>AM</td>
<td>1,159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>881</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WB</td>
<td>AM</td>
<td>1,058</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>745</td>
</tr>
</tbody>
</table>
Boulevard in Pacoima. The southern terminus is at the intersection of Veteran Avenue/Wilshire Boulevard in Westwood. This bus line has bus stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.

- **MTA 902** - Line 902 is a local north/south line that provides limited stop service from Pacoima to North Hollywood and travels primarily along Van Nuys Boulevard within the study area. This line operates Monday through Friday at a frequency of approximately 12 minutes during peak commute periods. The northern terminus is at the intersection of Van Nuys Boulevard/Glenoaks Boulevard in Pacoima. The southern terminus is at the North Hollywood Metro Red Line Station. This bus line has bus stops at the intersection of Van Nuys Boulevard/Plummer Street within the study area.

These transit lines within the study area are illustrated in Figure 4.

FUTURE YEAR 2014 WITHOUT PROJECT (PRE-CONSTRUCTION) TRAFFIC VOLUMES

The Future Cumulative Base (Year 2014 without project – pre-construction) traffic projections reflect growth in traffic from two primary sources: firstly, the background or ambient growth to reflect the effects of overall area-wide regional growth both within and outside the study area; and secondly, from traffic generated by specific cumulative projects located within, or in the vicinity of, the study area. Each of these components is described below.

Area-wide Ambient Traffic Growth

The traffic in the vicinity of the study area was estimated to increase at a rate of about approximately 2% per year. Future increases in background traffic volumes due to regional growth and development were expected to continue at this rate. With the assumed completion date of 2014, the existing 2011 traffic volumes were adjusted upward by a factor of 6% compounded annually to reflect this area-wide regional growth.

Cumulative Project Traffic Generation and Assignment

As indicated, the second potential source of traffic growth in the study area was that expected from other future development projects in the vicinity. These "cumulative projects" are those developments that are planned and expected to be in place within the same timeframe as the proposed project. Data describing cumulative projects in the area was compiled from information from the other traffic studies conducted in the area. Eight cumulative projects were identified within the study area in the timeframe identified for this study. The related projects that could
FIGURE 4
EXISTING TRANSIT LINES

LEGEND:
- LOS ANGELES COUNTY (MTA)
 METROPOLITAN TRANSPORTATION AUTHORITY
 - BUS STOP
 - PROJECT SITE
result in additional trips on the roadway system are described in Table 4. The locations of these projects are shown in Figure 5.

The trip generation estimates for the related projects were based on trip generation rates from *Trip Generation – An ITE Informational Report, 8th Edition*. These related projects’ trip generation estimates are shown in Table 4. As summarized in Table 4, the cumulative projects are expected to generate approximately 33,438 daily trips, of which 2,412 trips would occur during the morning peak hour and 2,648 trips would occur during the evening peak hour.

The geographic distribution and the traffic assignment of the cumulative projects were performed and the resulting volumes are shown in Figure 6. These related projects’ traffic estimates were added to the existing plus ambient growth traffic volumes to obtain the Cumulative Base (Year 2014 pre-construction) traffic volumes during both AM and PM peak hours. The traffic volumes presented in Figure 7 represent the Future Cumulative Base (Year 2014 pre-construction) conditions.

PROJECT CONSTRUCTION TRIPS

The heaviest or most intense construction phase for the Proposed Project is the one that is associated with the Excavation/Earthwork Phase of Construction. As indicated earlier, the Excavation/Earthwork Phase of Construction would generate the greatest amount of construction peak hour trips of the construction activities. This phase of construction consists of the following elements:

- Grading, and
- Excavation

Construction of the Proposed Project would be accomplished over two-year period scheduled to commence in 2012 and be complete in 2014. As part of the grading process, soil would be balanced on-site to the extent possible, and the soil compacted to design specifications. Up to 8,000 cubic yards of soil could be removed, which would require approximately 400 haul trips over a one-month period. The construction phases would not overlap with one another. Table 5 summarizes the number of worker and truck round-trips and daily traffic volumes for the Excavation/Earthwork Phase of Construction.
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Project Description</th>
<th>Location</th>
<th>Land Use Description</th>
<th>Daily Trips</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN</td>
<td>OUT</td>
<td>TOTAL</td>
</tr>
<tr>
<td>1</td>
<td>Fast-Food w/Drive-Through</td>
<td>Sepulveda Boulevard</td>
<td>Construct 2,600 s.f. fast-food restaurant with drive-through.</td>
<td>1,290</td>
<td>66</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>East Valley Elementary School #6</td>
<td>Rayen Street</td>
<td>Construct 950-student elementary school.</td>
<td>1,226</td>
<td>293</td>
<td>261</td>
</tr>
<tr>
<td>3</td>
<td>Apartments</td>
<td>9347 Van Nuys Boulevard</td>
<td>Construct 80 d.u. apartment.</td>
<td>538</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>Apartments</td>
<td>9247 Van Nuys Boulevard</td>
<td>Construct 74 d.u. apartment.</td>
<td>497</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>County Office Building</td>
<td>8750 Van Nuys Boulevard</td>
<td>Construct 142,105 s.f. county office building and 100-student day care.</td>
<td>10,243</td>
<td>271</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>Industrial Project</td>
<td>14450 Arminta Street</td>
<td>Construct 332,756 s.f. of industrial use and 9,520 s.f. of retail use.</td>
<td>2,471</td>
<td>282</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>East Valley Elementary School #12</td>
<td>Plummer Street</td>
<td>Construct 650-student elementary school.</td>
<td>839</td>
<td>150</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>Panorama Place Mixed-Use Project</td>
<td>Roscoe Boulevard</td>
<td>Construct 504 condominium units, 368,600 s.f. retail use, 45,000 s.f. health club, and 10,000 s.f. restaurant use.</td>
<td>16,334</td>
<td>329</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>RELATED PROJECTS TRIP GENERATION TOTAL</td>
<td></td>
<td></td>
<td>33,438</td>
<td>1,407</td>
<td>1,005</td>
</tr>
</tbody>
</table>

FIGURE 5
LOCATION OF RELATED PROJECTS
FIGURE 6
RELATED PROJECT ONLY PEAK HOUR TRAFFIC VOLUMES

LEGEND:

- AM/PM PEAK HOUR TRAFFIC VOLUMES
 ROUNDED TO THE NEAREST 5 VEHICLES
- NEGLIGIBLE VOLUME
- PROJECT SITE

RAJU Associates, Inc.
TABLE 5
PEAK CONSTRUCTION DAILY TRAFFIC ESTIMATION

Excavation/Earthwork Phase of Construction

<table>
<thead>
<tr>
<th>Component</th>
<th>Number of Round Trips</th>
<th>Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers</td>
<td>10 trips/day</td>
<td>20</td>
</tr>
<tr>
<td>Dump Trucks (soil export)</td>
<td>20 trips/day [1]</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

* Source: Based on data provided by EnviCraft, LLC.

**Worst case trip generation occurs during the Excavation/Earthwork Phase of Construction.

[1] Dump truck round trips based on 400 haul trips over a one-month period. Assumes 20 work days in one-month period. Therefore, number of round trips = 400 haul trips/20 days = 20 round trips per day.
As shown in Table 5, it is estimated that 60 daily trips would occur during the construction activities associated with the Excavation/Earthwork Phase.

Table 6 summarizes the estimated trip generation of the peak the Excavation/Earthwork Phase of Construction activity. As indicated in Table 6, 40 daily trips are associated with construction truck trips. This level of truck travel would be equivalent to 100 passenger car equivalent daily trips (passenger car equivalent or PCE: assumes 1 truck trip = 2.5 passenger cars). On an average hourly basis, assuming a uniform distribution of trips over an 8-hour work day, these daily trip totals would translate to approximately 13 trips during the morning and 13 trips evening peak hours on a week day.

During peak Excavation/Earthwork Phase of Construction activity, it is also estimated that the workers would generate approximately 20 daily trip ends (10 trips inbound and 10 trips outbound). Assuming arrival patterns consistent with construction sites of this nature, most, if not all of the trips would occur outside of the peak hours of adjacent street traffic. Conservatively, it is estimated that the workers trip generation would be 5 trips during the morning peak hour and 5 trips during the evening peak hour.

The overall maximum trip generation during Excavation/Earthwork Phase of Construction was estimated using the components of construction activity described above. The overall maximum trip generation is summarized in Table 6. The Excavation/Earthwork Phase of Construction, assuming no overlap of the construction activities, would result in a maximum total of approximately 120 daily trips of which 18 trips would occur during the morning peak hour and 18 trips during the evening peak hour. The total trips include both the construction trucks (adjusted for PCE’s) and workers.

Project (Construction Traffic) Trip Distribution

The regional geographic trip distribution for construction project trips was computed based on a number of factors including existing traffic patterns and general distribution of expected construction trips. They were estimated and assumed to be the following:

- To and From the North: 25%
- To and From the South: 25%
- To and From the West: 25%
- To and From the East: 25%
TABLE 6
ESTIMATED PROJECT CONSTRUCTION PEAK TRIP GENERATION

<table>
<thead>
<tr>
<th></th>
<th>Daily Trips</th>
<th></th>
<th></th>
<th></th>
<th>AM Peak Hour</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IN</td>
<td>OUT</td>
<td>TOTAL</td>
<td>IN</td>
<td>OUT</td>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION ACTIVITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Trucks (PCEs [1])</td>
<td>100</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Construction Workers</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Project Construction Trips Total</td>
<td>120</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

[1] Construction truck trips have been converted to Passenger Car Equivalents (PCEs) using a factor of 2.5.
Based on these distribution assumptions, location of the project, construction worker parking locations on-site, and construction activity trip generation from the Proposed Project, traffic estimates of construction project trips were developed. These construction project trips are presented in Figure 8.

Fire Station No. 7 Trip Generation (Post-Construction)

The implementation of the Proposed Project consists of a two-story, state of the art, 15,300 square-foot fire station sited on a 1.9 acre lot. The new station would include three heavy and three light apparatus bays, as well as an on-site diesel fueling station. The new facility would accommodate up to 18 firefighting/paramedic personnel. Only 6-7 personnel will be present at the site at any given time, with an occasional 12-15 personnel if a task force is assembled at the site.

Due to the operating nature of fire stations as emergency responders, it is not possible to predict their daily trip generation or when trips would be generated throughout a day. In fact, the Institute of Traffic Engineer’s (ITE) *Trip Generation – An ITE Informational Report, 8th Edition* does not include trip generation rates for fire station use. Only the commute trips by fire station personnel are predictable.

The existing Fire Station No. 7 firefighting and rescue staff is divided into three 24-hour on-duty platoons. This staffing pattern would be maintained at the new replacement facility. Shift changes at all City of Los Angeles Fire Stations take place at 8:00 A.M. every third day. Approximately 7 firefighters would leave the station and 7 firefighters would arrive for duty.

Based on this information, the operation of the fire station would generate a total of approximately 7 trips during the morning peak hour every third day. No appreciable effect due to the operation of the Proposed Project is anticipated and therefore, no significant impacts would occur due to the operation of the Project.

All parking for assigned personnel would be provided on site. Ingress/egress would be from Plummer Street. The on-site traffic flow would be configured to allow pull-through of returning apparatus and positioning for exit directly to the street and warning lights may be required to stop traffic on Plummer Street. Backing of apparatus from Plummer Street into the station would not be required.
FIGURE 8
PROJECT CONSTRUCTION ACTIVITY PEAK HOUR TRAFFIC VOLUMES

LEGEND:
XXX(XXX) - AM(PM) PEAK HOUR TRAFFIC VOLUMES
* - NEGLIGIBLE VOLUME
- PROJECT SITE

RAJU Associates, Inc.
CUMULATIVE YEAR 2014 WITH PROJECT CONSTRUCTION ACTIVITY TRAFFIC VOLUMES

Utilizing the construction activity traffic estimates developed for both peak hours, traffic forecasts for the Future Cumulative Year 2014 with Project Construction Activity conditions were developed. The Future Cumulative Base (Year 2014 pre-construction) traffic forecasts were combined with the Excavation/Earthwork Phase construction activity traffic volumes to obtain the Future Cumulative (2014) with Project Construction Activity traffic volume forecasts. The Future Cumulative (2014) with Project Construction Activity traffic volumes during both the morning and evening peak hours are presented in Figure 9.

SIGNIFICANT TRAFFIC IMPACT CRITERIA

The City of Los Angeles Department of Transportation has established threshold criteria that determine if a project has a significant traffic impact at a specific analysis location. According to the criteria provided by the City of Los Angeles, a project impact is considered significant if the following conditions are met:

Intersection Impact Criteria:

<table>
<thead>
<tr>
<th>Intersection Condition With Project Traffic</th>
<th>Project-Related Increase in V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>V/C Ratio</td>
</tr>
<tr>
<td>C</td>
<td>0.701 – 0.800</td>
</tr>
<tr>
<td>D</td>
<td>0.801 – 0.900</td>
</tr>
<tr>
<td>E, F</td>
<td>> 0.900</td>
</tr>
</tbody>
</table>

Using these criteria, for example, a project would not have a significant impact at an intersection if it is operating at LOS C after the addition of project traffic and the incremental change in the V/C ratio is less than 0.040. However, if the intersection is operating at a LOS F after the addition of project traffic and the incremental change in the V/C ratio is 0.010 or greater, the project would be considered to have a significant impact.
FIGURE 9
CUMULATIVE (2014) WITH PROJECT CONSTRUCTION ACTIVITY PEAK HOUR TRAFFIC VOLUMES
Street Segment Impact Criteria:

<table>
<thead>
<tr>
<th>Roadway Segment Condition</th>
<th>Project-Related Increase in V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 0.701 – 0.800</td>
<td>equal to or greater than 0.080</td>
</tr>
<tr>
<td>D 0.801 – 0.900</td>
<td>equal to or greater than 0.040</td>
</tr>
<tr>
<td>E, F > 0.900</td>
<td>equal to or greater than 0.020</td>
</tr>
</tbody>
</table>

* including project, ambient and related project growth.

Using these criteria, for example, a project would not have a significant impact along a street segment if it is operating at LOS C after the addition of project traffic and the incremental change in the V/C ratio is less than 0.080. However, if the street segment is operating at a LOS F after the addition of project traffic and the incremental change in V/C ratio is 0.02 or greater, the project would be considered to have a significant traffic impact.

CUMULATIVE BASE (YEAR 2014 PRE-CONSTRUCTION) TRAFFIC CONDITIONS

The Future Cumulative Base (Year 2014 pre-construction) peak hour traffic volumes were analyzed at each of the study intersection and street segment to determine the V/C ratio and corresponding level of service. Table 7 presents the results of the Cumulative Base (Year 2014 without project – pre-construction) traffic analysis. As indicated in the table, all of the analyzed locations are projected to operate at LOS D or better during both the morning and evening peak hours. The capacity calculation worksheets for Cumulative (2014) Base conditions are provided in Appendix C.

CUMULATIVE (2014) WITH PROJECT CONSTRUCTION ACTIVITY TRAFFIC CONDITIONS

The Future Cumulative (2014) with Project Construction Activity peak hour traffic volumes were analyzed to determine the V/C ratio and LOS at each of the study locations. The results of this analysis are also summarized on Table 7. As indicated in the table, all of the analyzed locations are projected to operate at LOS D or better during both the morning and evening peak hours with the addition of construction-related traffic. The capacity calculation worksheets for Cumulative (2014) with Project Construction Activity conditions are provided in Appendix C.
<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Cumulative (2014) Base Pre-Construction</th>
<th>Cumulative (2014) with Project Construction Activity</th>
<th>Increase in V/C</th>
<th>Significant Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V/C</td>
<td>LOS</td>
<td>V/C</td>
<td>LOS</td>
</tr>
<tr>
<td>1.</td>
<td>Van Nuys Boulevard & Plummer Street</td>
<td>AM</td>
<td>0.796</td>
<td>C</td>
<td>0.798</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.699</td>
<td>B</td>
<td>0.703</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Street Segment</th>
<th>DIR</th>
<th>Peak Hour</th>
<th>Cumulative (2014) Base Pre-Construction</th>
<th>Cumulative (2014) with Project Construction Activity</th>
<th>Increase in V/C</th>
<th>Significant Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volumes</td>
<td>V/C</td>
<td>LOS</td>
<td>Volumes</td>
</tr>
<tr>
<td>2.</td>
<td>Plummer Street between Cedros Avenue and Van Nuys Boulevard</td>
<td>EB</td>
<td>AM</td>
<td>1,228</td>
<td>0.877</td>
<td>D</td>
<td>1,231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>945</td>
<td>0.675</td>
<td>B</td>
<td>951</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WB</td>
<td>AM</td>
<td>1,127</td>
<td>0.805</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>798</td>
<td>0.570</td>
<td>A</td>
</tr>
</tbody>
</table>
CONSTRUCTION TRAFFIC IMPACTS

Using the specified significant impact criteria, the traffic impacts at the analysis locations were determined. Table 7 identifies the individual impacts during both the morning and evening peak hours at all analyses locations. It can be observed none of the analyzed locations would be significantly impacted by the traffic associated with the construction activity of the Proposed Project. Therefore, no traffic-related mitigation measures would be required for the Proposed Project.

Additionally, during the construction phase of the Proposed Project, there would be no temporary street closures or reduction in travel lanes; therefore, the adjacent streets would not be affected.

PROPOSED PROJECT OPERATION IMPACTS

The Proposed Project consisting of a two-story, 15,300 square-foot fire station is estimated to generate considerably less trips than trips generated for the phases of construction. As indicated earlier, the operation of the proposed fire station would generate a total of approximately 7 trips during the morning peak hour every third day. No appreciable effect due to the operation of the Proposed Project is anticipated. Therefore, none of the analyzed locations would be significantly impacted by the operation of the Proposed Fire Station Project and no mitigation measures would be required.

CONSTRUCTION PARKING IMPACTS

Currently, unrestricted on-street parking is allowed along the south side of Plummer Street adjacent to the Project site. It is anticipated that portions (not the entire stretch) of the on-street parking on the south side of Plummer Street in the vicinity of the Proposed Project site would be temporarily lost during the short period of construction. No other on-street parking would be affected by construction.

All construction activity will occur on-site and will not impact on-street parking on any of the adjacent streets. It is anticipated that construction workers will park on-site or along the south side of Plummer Street where on-street parking is currently not utilized.
CONSTRUCTION ACCESS IMPACTS

During construction, the sidewalk on the south side of Plummer Street adjacent to the Project site will be temporarily closed possibly in short sections. No other sidewalks or driveways would be affected during construction. This would be a temporary pedestrian access impact.

No driveways or sidewalks would need to be removed during construction. Therefore, there would be no loss of vehicular or pedestrian access to any uses along Plummer Street during the phases of construction.

TRANSIT CONDITIONS DURING CONSTRUCTION

Four bus lines currently serve the study area. These bus lines are operated by the Los Angeles County Metropolitan Transportation Authority (MTA). MTA Bus Line 167 has bus stops located along Plummer Street and MTA Bus Lines 233, 761, and 902 have bus stops along Van Nuys Boulevard in the vicinity of the Project site.

No temporary loss of bus stops would occur or rerouting of bus lines be required, during the construction activities associated with the construction or operation of the Proposed Project.

SUMMARY OF PROJECT CONSTRUCTION IMPACTS

The following summary of Proposed Project construction and operation impacts are presented:

Temporarily Traffic Impacts: During construction activities associated with the Proposed Project, there would be no temporary street closures or travel lane closures; and the classification of the adjacent streets will not be affected. Additionally, there would be no significant traffic impacts associated with the Proposed Project construction and operation.

Temporarily Loss of Access: During construction, the sidewalk on the south side of Plummer Street adjacent to the Project site will be temporarily closed possibly in short sections. No other sidewalks or driveways would be affected during construction. Although there would be temporary sidewalk closures, no access impacts to any of the adjacent properties would occur during the construction as well as operational phases of the Proposed Project.

The operation of the Proposed Project will not result in any vehicular or pedestrian access impacts.
Temporary Loss of Bus Stops or Rerouting of Bus Lines: There would be no loss of bus stops or re-routing of bus lines due to the Proposed Project construction and operation.

Temporary Loss of On-Street Parking: During construction, it is anticipated that portions (not the entire stretch) of the on-street parking on the south side of Plummer Street adjacent to the Project site would be temporarily lost during the short period of construction. No other on-street parking would be affected by construction of the Proposed Project.

No significant impacts on parking due to the operation of the Proposed Project would occur.
INTERSECTION LANE CONFIGURATIONS

<table>
<thead>
<tr>
<th>MAP No.</th>
<th>INTERSECTION</th>
<th>EXISTING (2011) CONDITIONS</th>
<th>FUTURE (2014) CONDITIONS</th>
</tr>
</thead>
</table>
| 1 | N/S: Van Nuys Boulevard
 E/W: Plummer Street
 (Traffic Signal) | | Same As Existing |
APPENDIX B

EXISTING TRAFFIC COUNTS
Intersection Turning Movement

Prepared by:
National Data & Surveying Services

Project ID: CA11_5193_002
Day: TUESDAY

NS STREET: Van Nuys Blvd
DATE: 5/24/2011
LOCATION: City of Los Angeles

EW STREET: Plummer St
DAY: TUESDAY
PROJECT#: 11-5193-002

<table>
<thead>
<tr>
<th>NS/ EW Streets:</th>
<th>Van Nuys Blvd</th>
<th>Van Nuys Blvd</th>
<th>Plummer St</th>
<th>Plummer St</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORTHBOUND</td>
<td>SOUTHBOUND</td>
<td>EASTBOUND</td>
<td>WESTBOUND</td>
</tr>
<tr>
<td>Lanes:</td>
<td>NL NT NR</td>
<td>SL ST SR</td>
<td>EL ET ER</td>
<td>WL WT WR</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>27 106 12</td>
<td>13 148 62</td>
<td>48 129 20</td>
<td>11 124 5</td>
</tr>
<tr>
<td>7:15 AM</td>
<td>37 136 14</td>
<td>18 136 85</td>
<td>44 193 34</td>
<td>14 185 11</td>
</tr>
<tr>
<td>7:30 AM</td>
<td>38 151 23</td>
<td>20 167 77</td>
<td>50 223 61</td>
<td>18 173 23</td>
</tr>
<tr>
<td>7:45 AM</td>
<td>24 122 10</td>
<td>11 179 65</td>
<td>52 180 54</td>
<td>15 157 17</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>30 124 4</td>
<td>3 181 44</td>
<td>49 166 65</td>
<td>8 100 10</td>
</tr>
<tr>
<td>8:15 AM</td>
<td>17 111 5</td>
<td>5 197 42</td>
<td>40 108 25</td>
<td>7 66 3</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>14 121 8</td>
<td>8 141 48</td>
<td>34 87 17</td>
<td>11 45 10</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>23 85 9</td>
<td>11 127 33</td>
<td>36 58 14</td>
<td>7 58 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL VOLUMES</th>
<th>NL NT NR</th>
<th>SL ST SR</th>
<th>EL ET ER</th>
<th>WL WT WR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>210 956 85</td>
<td>89 1276 456</td>
<td>353 1144 290</td>
<td>91 908 87</td>
<td>5945</td>
</tr>
<tr>
<td>APPROACH %'s</td>
<td>16.79% 76.42% 6.79%</td>
<td>4.89% 70.07% 25.04%</td>
<td>19.75% 64.02% 16.23%</td>
<td>8.38% 83.61% 8.01%</td>
<td></td>
</tr>
<tr>
<td>PEAK HR START TIME:</td>
<td>7:15 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEAK HR VOL:</td>
<td>129 533 51</td>
<td>52 663 271</td>
<td>195 762 214</td>
<td>55 615 61</td>
<td>3601</td>
</tr>
<tr>
<td>PEAK HR FACTOR:</td>
<td>0.841</td>
<td>0.934</td>
<td>0.876</td>
<td>0.854</td>
<td>0.879</td>
</tr>
</tbody>
</table>

CONTROL: Signalized
Intersection Turning Movement

Project ID: CA11_5193_002
Day: TUESDAY

NS STREET: Van Nuys Blvd
DATE: 5/24/2011
LOCATION: City of Los Angeles

EW STREET: Plummer St
DAY: TUESDAY
PROJECT #: 11-5193-002

Traffic Volumes and Percentages

<table>
<thead>
<tr>
<th>Time</th>
<th>NL</th>
<th>NT</th>
<th>NR</th>
<th>SL</th>
<th>ST</th>
<th>SR</th>
<th>EL</th>
<th>ET</th>
<th>ER</th>
<th>WL</th>
<th>WT</th>
<th>WR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 PM</td>
<td>30</td>
<td>191</td>
<td>10</td>
<td>8</td>
<td>158</td>
<td>33</td>
<td>51</td>
<td>90</td>
<td>27</td>
<td>6</td>
<td>81</td>
<td>12</td>
<td>697</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>25</td>
<td>188</td>
<td>16</td>
<td>6</td>
<td>171</td>
<td>37</td>
<td>46</td>
<td>95</td>
<td>33</td>
<td>9</td>
<td>95</td>
<td>9</td>
<td>730</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>29</td>
<td>213</td>
<td>17</td>
<td>7</td>
<td>154</td>
<td>39</td>
<td>60</td>
<td>93</td>
<td>30</td>
<td>10</td>
<td>77</td>
<td>8</td>
<td>737</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>36</td>
<td>174</td>
<td>13</td>
<td>6</td>
<td>153</td>
<td>35</td>
<td>59</td>
<td>117</td>
<td>27</td>
<td>8</td>
<td>93</td>
<td>7</td>
<td>728</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>29</td>
<td>217</td>
<td>14</td>
<td>9</td>
<td>160</td>
<td>46</td>
<td>57</td>
<td>108</td>
<td>28</td>
<td>5</td>
<td>94</td>
<td>12</td>
<td>779</td>
</tr>
<tr>
<td>5:15 PM</td>
<td>33</td>
<td>220</td>
<td>6</td>
<td>11</td>
<td>151</td>
<td>62</td>
<td>49</td>
<td>139</td>
<td>34</td>
<td>6</td>
<td>91</td>
<td>10</td>
<td>812</td>
</tr>
<tr>
<td>5:30 PM</td>
<td>35</td>
<td>200</td>
<td>12</td>
<td>8</td>
<td>176</td>
<td>46</td>
<td>57</td>
<td>127</td>
<td>38</td>
<td>12</td>
<td>120</td>
<td>12</td>
<td>843</td>
</tr>
<tr>
<td>5:45 PM</td>
<td>35</td>
<td>177</td>
<td>8</td>
<td>6</td>
<td>154</td>
<td>46</td>
<td>67</td>
<td>116</td>
<td>36</td>
<td>8</td>
<td>112</td>
<td>18</td>
<td>783</td>
</tr>
</tbody>
</table>

Total Volumes

<table>
<thead>
<tr>
<th></th>
<th>NL</th>
<th>NT</th>
<th>NR</th>
<th>SL</th>
<th>ST</th>
<th>SR</th>
<th>EL</th>
<th>ET</th>
<th>ER</th>
<th>WL</th>
<th>WT</th>
<th>WR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL VOLUMES</td>
<td>252</td>
<td>1580</td>
<td>96</td>
<td>61</td>
<td>1277</td>
<td>344</td>
<td>446</td>
<td>885</td>
<td>253</td>
<td>64</td>
<td>763</td>
<td>88</td>
<td>6109</td>
</tr>
</tbody>
</table>

Approach %’s

<table>
<thead>
<tr>
<th></th>
<th>NL</th>
<th>NT</th>
<th>NR</th>
<th>SL</th>
<th>ST</th>
<th>SR</th>
<th>EL</th>
<th>ET</th>
<th>ER</th>
<th>WL</th>
<th>WT</th>
<th>WR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROACH %’s</td>
<td>13.07%</td>
<td>81.95%</td>
<td>4.98%</td>
<td>3.63%</td>
<td>75.92%</td>
<td>20.45%</td>
<td>28.16%</td>
<td>55.87%</td>
<td>15.97%</td>
<td>6.99%</td>
<td>83.39%</td>
<td>9.62%</td>
<td></td>
</tr>
</tbody>
</table>

Peak Hour Data

<table>
<thead>
<tr>
<th></th>
<th>5:00 PM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAK HR VOL</td>
<td>132</td>
<td>3217</td>
</tr>
<tr>
<td>PEAK HR FACTOR</td>
<td>0.948</td>
<td>0.954</td>
</tr>
</tbody>
</table>

CONTROL: Signalized
DAILY TOTALS

<table>
<thead>
<tr>
<th>AM Period</th>
<th>NB</th>
<th>SB</th>
<th>EB</th>
<th>WB</th>
<th>TOTAL</th>
<th>PM Period</th>
<th>NB</th>
<th>SB</th>
<th>EB</th>
<th>WB</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>20</td>
<td>27</td>
<td>47</td>
<td>12:00</td>
<td>121</td>
<td>63</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:15</td>
<td>18</td>
<td>11</td>
<td>29</td>
<td>12:15</td>
<td>94</td>
<td>91</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:30</td>
<td>15</td>
<td>11</td>
<td>26</td>
<td>12:30</td>
<td>96</td>
<td>91</td>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:45</td>
<td>12</td>
<td>65</td>
<td>10</td>
<td>22</td>
<td>124</td>
<td>86</td>
<td>397</td>
<td>117</td>
<td>382</td>
<td>203</td>
<td>779</td>
</tr>
<tr>
<td>01:00</td>
<td>11</td>
<td>6</td>
<td>17</td>
<td>13:00</td>
<td>102</td>
<td>126</td>
<td>228</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:15</td>
<td>13</td>
<td>10</td>
<td>23</td>
<td>13:15</td>
<td>138</td>
<td>171</td>
<td>309</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:30</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>13:30</td>
<td>228</td>
<td>149</td>
<td>377</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:45</td>
<td>6</td>
<td>34</td>
<td>4</td>
<td>27</td>
<td>10</td>
<td>61</td>
<td>146</td>
<td>614</td>
<td>132</td>
<td>578</td>
<td>278</td>
</tr>
<tr>
<td>02:00</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>14:00</td>
<td>143</td>
<td>112</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:15</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>14:15</td>
<td>139</td>
<td>113</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:30</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>14:30</td>
<td>150</td>
<td>135</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:45</td>
<td>4</td>
<td>17</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>33</td>
<td>144</td>
<td>581</td>
<td>132</td>
<td>492</td>
<td>281</td>
</tr>
<tr>
<td>03:00</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>15:00</td>
<td>141</td>
<td>120</td>
<td>261</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:15</td>
<td>4</td>
<td>11</td>
<td>15</td>
<td>15:15</td>
<td>147</td>
<td>138</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:30</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>15:30</td>
<td>165</td>
<td>133</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:45</td>
<td>5</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>47</td>
<td>154</td>
<td>607</td>
<td>150</td>
<td>541</td>
<td>304</td>
<td>1148</td>
</tr>
<tr>
<td>04:00</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td>16:00</td>
<td>159</td>
<td>141</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:15</td>
<td>10</td>
<td>13</td>
<td>23</td>
<td>16:15</td>
<td>183</td>
<td>155</td>
<td>338</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:30</td>
<td>13</td>
<td>29</td>
<td>4</td>
<td>16:30</td>
<td>233</td>
<td>147</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:45</td>
<td>17</td>
<td>48</td>
<td>17</td>
<td>52</td>
<td>34</td>
<td>100</td>
<td>209</td>
<td>737</td>
<td>160</td>
<td>603</td>
<td>369</td>
</tr>
<tr>
<td>05:00</td>
<td>14</td>
<td>30</td>
<td>44</td>
<td>17:00</td>
<td>203</td>
<td>163</td>
<td>366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:15</td>
<td>27</td>
<td>46</td>
<td>73</td>
<td>17:15</td>
<td>234</td>
<td>186</td>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:30</td>
<td>46</td>
<td>71</td>
<td>117</td>
<td>17:30</td>
<td>224</td>
<td>200</td>
<td>424</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:45</td>
<td>54</td>
<td>141</td>
<td>240</td>
<td>147</td>
<td>381</td>
<td>174</td>
<td>45</td>
<td>881</td>
<td>191</td>
<td>740</td>
<td>411</td>
</tr>
<tr>
<td>06:00</td>
<td>77</td>
<td>86</td>
<td>163</td>
<td>18:00</td>
<td>185</td>
<td>168</td>
<td>353</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:15</td>
<td>90</td>
<td>127</td>
<td>217</td>
<td>18:15</td>
<td>175</td>
<td>151</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:30</td>
<td>104</td>
<td>168</td>
<td>272</td>
<td>18:30</td>
<td>153</td>
<td>167</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:45</td>
<td>157</td>
<td>428</td>
<td>193</td>
<td>574</td>
<td>350</td>
<td>1002</td>
<td>184</td>
<td>566</td>
<td>137</td>
<td>623</td>
<td>287</td>
</tr>
<tr>
<td>07:00</td>
<td>195</td>
<td>223</td>
<td>418</td>
<td>19:00</td>
<td>103</td>
<td>136</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:15</td>
<td>271</td>
<td>305</td>
<td>576</td>
<td>19:15</td>
<td>117</td>
<td>137</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:30</td>
<td>335</td>
<td>280</td>
<td>615</td>
<td>19:30</td>
<td>91</td>
<td>117</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:45</td>
<td>273</td>
<td>1074</td>
<td>5058</td>
<td>121</td>
<td>523</td>
<td>2132</td>
<td>194</td>
<td>932</td>
<td>100</td>
<td>490</td>
<td>181</td>
</tr>
<tr>
<td>08:00</td>
<td>280</td>
<td>174</td>
<td>454</td>
<td>20:00</td>
<td>331</td>
<td>104</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:15</td>
<td>176</td>
<td>124</td>
<td>300</td>
<td>20:15</td>
<td>93</td>
<td>76</td>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30</td>
<td>129</td>
<td>107</td>
<td>236</td>
<td>20:30</td>
<td>104</td>
<td>70</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:45</td>
<td>106</td>
<td>691</td>
<td>105</td>
<td>510</td>
<td>211</td>
<td>1201</td>
<td>20:45</td>
<td>108</td>
<td>396</td>
<td>75</td>
<td>325</td>
</tr>
<tr>
<td>09:00</td>
<td>125</td>
<td>75</td>
<td>200</td>
<td>21:00</td>
<td>33</td>
<td>75</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:15</td>
<td>105</td>
<td>71</td>
<td>176</td>
<td>21:15</td>
<td>95</td>
<td>66</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td>85</td>
<td>88</td>
<td>173</td>
<td>21:30</td>
<td>76</td>
<td>69</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:45</td>
<td>96</td>
<td>411</td>
<td>78</td>
<td>312</td>
<td>174</td>
<td>723</td>
<td>21:45</td>
<td>68</td>
<td>332</td>
<td>48</td>
<td>258</td>
</tr>
<tr>
<td>10:00</td>
<td>100</td>
<td>76</td>
<td>176</td>
<td>22:00</td>
<td>93</td>
<td>83</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>84</td>
<td>67</td>
<td>151</td>
<td>22:15</td>
<td>51</td>
<td>45</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>95</td>
<td>86</td>
<td>181</td>
<td>22:30</td>
<td>57</td>
<td>45</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td>80</td>
<td>359</td>
<td>82</td>
<td>311</td>
<td>162</td>
<td>670</td>
<td>22:45</td>
<td>46</td>
<td>216</td>
<td>37</td>
<td>190</td>
</tr>
<tr>
<td>11:00</td>
<td>97</td>
<td>67</td>
<td>164</td>
<td>23:00</td>
<td>43</td>
<td>44</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td>75</td>
<td>94</td>
<td>169</td>
<td>23:15</td>
<td>36</td>
<td>24</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>86</td>
<td>75</td>
<td>161</td>
<td>23:30</td>
<td>29</td>
<td>29</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td>96</td>
<td>354</td>
<td>81</td>
<td>317</td>
<td>177</td>
<td>671</td>
<td>23:45</td>
<td>29</td>
<td>137</td>
<td>25</td>
<td>122</td>
</tr>
<tr>
<td>TOTALS</td>
<td>3640</td>
<td>3505</td>
<td>7145</td>
<td>TOTALS</td>
<td>5953</td>
<td>5344</td>
<td>11297</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPLIT %</td>
<td>50.9%</td>
<td>49.1%</td>
<td>38.7%</td>
<td>SPLIT %</td>
<td>52.7%</td>
<td>47.3%</td>
<td>61.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAILY TOTALS

<table>
<thead>
<tr>
<th>AM Peak Hour</th>
<th>07:15</th>
<th>07:00</th>
<th>07:15</th>
<th>PM Peak Hour</th>
<th>17:00</th>
<th>17:15</th>
<th>17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM PK Volume</td>
<td>1159</td>
<td>1058</td>
<td>2168</td>
<td>PM PK Volume</td>
<td>881</td>
<td>745</td>
<td>1621</td>
</tr>
<tr>
<td>PK HR Factor</td>
<td>0.885</td>
<td>0.867</td>
<td>0.881</td>
<td>PK HR Factor</td>
<td>0.941</td>
<td>0.931</td>
<td>0.956</td>
</tr>
<tr>
<td>7-9 PK Volume</td>
<td>1765</td>
<td>1568</td>
<td>3333</td>
<td>4-6 Volume</td>
<td>1618</td>
<td>1343</td>
<td>2961</td>
</tr>
<tr>
<td>7-9 PK Hour</td>
<td>07:15</td>
<td>07:00</td>
<td>07:15</td>
<td>4-6 Peak Hour</td>
<td>17:00</td>
<td>17:00</td>
<td>17:00</td>
</tr>
<tr>
<td>7-9 PK Volume</td>
<td>1159</td>
<td>1058</td>
<td>2168</td>
<td>4-6 PK</td>
<td>881</td>
<td>745</td>
<td>1621</td>
</tr>
<tr>
<td>PK HR Factor</td>
<td>0.885</td>
<td>0.867</td>
<td>0.881</td>
<td>PK HR Factor</td>
<td>0.941</td>
<td>0.931</td>
<td>0.956</td>
</tr>
</tbody>
</table>
APPENDIX C

CAPACITY CALCULATION WORKSHEETS
Volume/Lane/Signal Configurations

<table>
<thead>
<tr>
<th></th>
<th>NORTHBOUND</th>
<th>SOUTHBOUND</th>
<th>WESTBOUND</th>
<th>EASTBOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>129</td>
<td>52</td>
<td>55</td>
<td>195</td>
</tr>
<tr>
<td>TH</td>
<td>533</td>
<td>663</td>
<td>615</td>
<td>762</td>
</tr>
<tr>
<td>RT</td>
<td>51</td>
<td>271</td>
<td>61</td>
<td>214</td>
</tr>
<tr>
<td>TOTAL</td>
<td>129</td>
<td>52</td>
<td>55</td>
<td>195</td>
</tr>
<tr>
<td>LANE</td>
<td>1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>Perm</td>
<td>Perm</td>
<td>Perm</td>
<td>Perm</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Critical Movements Diagram

- **SouthBound**
 - A: 467
 - B: 52

- **EastBound**
 - A: 488
 - B: 195

- **WestBound**
 - A: 338
 - B: 55

- **NorthBound**
 - A: 292
 - B: 129

A = Adjusted Through/Right Volume
B = Adjusted Left Volume
* = ATSAC Benefit

Results

- North/South Critical Movements = B(N/B) + A(S/B)
- West/East Critical Movements = B(W/B) + A(E/B)

\[
\text{V/C} = \frac{129 + 467 + 55 + 488}{*1500} = 0.689
\]

\[
\text{LOS} = B
\]
EXISTING (2011) CONDITIONS

Van Nuys Boulevard

Plummer Street

I/S No: 1

AM/PM: PM

Comments: EXISTING (2011) CONDITIONS

COUNT DATE:

STUDY DATE:

GROWTH FACTOR:

Volume/Lane/Signal Configurations

<table>
<thead>
<tr>
<th></th>
<th>NORTHBOUND</th>
<th>SOUTHBOUND</th>
<th>WESTBOUND</th>
<th>EASTBOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING</td>
<td>LT TH RT</td>
<td>LT TH RT</td>
<td>LT TH RT</td>
<td>LT TH RT</td>
</tr>
<tr>
<td>AMBIENT</td>
<td>132 814 40</td>
<td>34 641 200</td>
<td>31 417 52</td>
<td>230 490 136</td>
</tr>
<tr>
<td>RELATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>132 814 40</td>
<td>34 641 200</td>
<td>31 417 52</td>
<td>230 490 136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LT TH RT</th>
<th>LT TH RT</th>
<th>LT TH RT</th>
<th>LT TH RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANE</td>
<td>1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>Perm Auto</td>
<td>Perm Auto</td>
<td>Perm Auto</td>
<td>Perm Auto</td>
</tr>
</tbody>
</table>

Critical Movements Diagram

<table>
<thead>
<tr>
<th></th>
<th>SouthBound</th>
<th>WestBound</th>
<th>NorthBound</th>
<th>EastBound</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>421</td>
<td>235</td>
<td>427</td>
<td>313</td>
</tr>
<tr>
<td>B:</td>
<td>34</td>
<td>34</td>
<td>132</td>
<td>230</td>
</tr>
</tbody>
</table>

A = Adjusted Through/Right Volume

B = Adjusted Left Volume

" = ATSAC Benefit

Results

North/South Critical Movements = B(N/B) + A(S/B)

West/East Critical Movements = A(W/B) + B(E/B)

\[\frac{V/C}{1500} = \frac{132 + 421 + 235 + 230}{1500} = 0.609 \]

LOS = B

Developed by Chun Wong, 12/94
CalcaDB

INTERSECTION DATA SUMMARY SHEET

N/S: Van Nuys Boulevard W/E: Plummer Street I/S No: 1

AM/PM: AM Comments: CUMULATIVE(2014) BASE (PRE-CONSTRUCTION)

COUNT DATE: STUDY DATE: GROWTH FACTOR:

Volume/Lane/Signal Configurations

<table>
<thead>
<tr>
<th></th>
<th>NORTHBOUND</th>
<th>SOUTHBOUND</th>
<th>WESTBOUND</th>
<th>EASTBOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBIENT</td>
<td>166</td>
<td>55</td>
<td>68</td>
<td>219</td>
</tr>
<tr>
<td>RELATED</td>
<td>615</td>
<td>752</td>
<td>661</td>
<td>815</td>
</tr>
<tr>
<td>PROJECT</td>
<td>64</td>
<td>303</td>
<td>65</td>
<td>259</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
<td>55</td>
<td>68</td>
<td>219</td>
</tr>
<tr>
<td>LANE</td>
<td>10100100</td>
<td>10101000</td>
<td>10101000</td>
<td>10101000</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>Perm</td>
<td>Perm</td>
<td>Perm</td>
<td>Perm</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Critical Movements Diagram

SouthBound

- A: 528
- B: 55

WestBound

- A: 363
- B: 68

NorthBound

- A: 340
- B: 166

EastBound

- A: 537
- B: 219

V/C RATIO LOS

- 0.00 - 0.60 A
- 0.61 - 0.70 B
- 0.71 - 0.80 C
- 0.81 - 0.90 D
- 0.91 - 1.00 E

Results

- North/South Critical Movements = B(N/B) + A(S/B)
- West/East Critical Movements = B(W/B) + A(E/B)

\[
V/C = \frac{166 + 528 + 68 + 537}{1500} = 0.796
\]

LOS = C

Developed by Chun Wong, 12/94
Critical Movements Diagram

Results

North/South Critical Movements = B(N/B) + A(S/B)

West/East Critical Movements = A(W/B) + B(E/B)

\[
\frac{V}{C} = \frac{169 + 479 + 251 + 254}{1500} = 0.699
\]

LOS = B

A = Adjusted Through/Right Volume
B = Adjusted Left Volume
* = ATSAC Benefit

Developed by Chun Wong, 12/94
Volume/Lane/Signal Configurations

EXISTING

<table>
<thead>
<tr>
<th>LANE</th>
<th>LT</th>
<th>TH</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBIENT</td>
<td>167</td>
<td>615</td>
<td>64</td>
</tr>
<tr>
<td>RELATED</td>
<td>55</td>
<td>752</td>
<td>308</td>
</tr>
<tr>
<td>PROJECT</td>
<td>68</td>
<td>662</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE</th>
<th>LT</th>
<th>TH</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>222</td>
<td>815</td>
<td>259</td>
</tr>
</tbody>
</table>

CRITICAL MOVEMENTS DIAGRAM

<table>
<thead>
<tr>
<th>Movement</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NorthBound</td>
<td>340</td>
<td>167</td>
</tr>
<tr>
<td>SouthBound</td>
<td>530</td>
<td>55</td>
</tr>
<tr>
<td>EastBound</td>
<td>537</td>
<td>222</td>
</tr>
<tr>
<td>WestBound</td>
<td>364</td>
<td>68</td>
</tr>
</tbody>
</table>

- **V/C Ratio**
 - 0.00 - 0.60 = A
 - 0.61 - 0.70 = B
 - 0.71 - 0.80 = C
 - 0.81 - 0.90 = D
 - 0.91 - 1.00 = E

- **LOS**
 - **North/South Critical Movements** = B(N/B) + A(S/B)
 - **West/East Critical Movements** = B(W/B) + A(E/B)

\[
V/C = \frac{167 + 530 + 68 + 537}{*1500} = 0.798
\]

- **Results**
 - **LOS** = C

Developed by Chun Wong, 12/94
CalcaDB

INTERSECTION DATA SUMMARY SHEET

N/S: Van Nuys Boulevard
W/E: Plummer Street
I/S No.: 1

AM/PM: PM
Comments: CUMULATIVE(2014) W/CONSTRUCTION PROJECT

COUNT DATE:
STUDY DATE:
GROWTH FACTOR:

Volume/Lane/Signal Configurations

<table>
<thead>
<tr>
<th></th>
<th>NORTHBOUND</th>
<th>SOUTHBOUND</th>
<th>WESTBOUND</th>
<th>EASTBOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBIENT</td>
<td>169 922 54</td>
<td>36 737 224</td>
<td>45 447 55</td>
<td>258 526 179</td>
</tr>
<tr>
<td>RELATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>169 922 54</td>
<td>36 737 224</td>
<td>45 447 55</td>
<td>258 526 179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANE</th>
<th>PHASING</th>
<th>RTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>1 0 1 0 1 0</td>
<td>1 0 1 0 1</td>
</tr>
<tr>
<td>TH</td>
<td>1 0 1 0 1 0</td>
<td>1 0 1 0 1</td>
</tr>
<tr>
<td>RT</td>
<td>1 0 1 0 1 0</td>
<td>1 0 1 0 1</td>
</tr>
</tbody>
</table>

SIGNAL

- Perm
- Auto

Critical Movements Diagram

- **SouthBound**
 - A: 481
 - B: 36

- **EastBound**
 - A: 353
 - B: 258

- **NorthBound**
 - A: 488
 - B: 169

- **WestBound**
 - A: 251
 - B: 45

A = Adjusted Through/Right Volume
B = Adjusted Left Volume
*** = ATSAC Benefit**

Results

- **North/South Critical Movements** = B(N/B) + A(S/B)
- **West/East Critical Movements** = A(W/B) + B(E/B)

**V/C = \[
\frac{169 + 481 + 251 + 258}{*1500} = 0.703
\]**

LOS = C

Developed by Chun Wong, 12/94