Asphalt Plant No. 1 Replacement and Modernization

Prepared for
City of Los Angeles
Department of Public Works,
Bureau of Engineering
Bureau of Street Services

December 2015
LEAD CITY AGENCY AND ADDRESS: Los Angeles City Engineer
c/o Bureau of Engineering, EMG
1149 Broadway, Suite 600
Los Angeles, CA 90015-2213

COUNCIL DISTRICT 14

PROJECT TITLE: Asphalt Plant No. 1 Replacement and Modernization
(W.O. E1907820)

T.G.
Page 634 Grid J7

PROJECT LOCATION: 2484 E. Olympic Boulevard, within the Central City North Plan Area, Council District 14, in the City of Los Angeles.

DESCRIPTION: The City of Los Angeles is proposing to replace and modernize Asphalt Plant No. 1 (proposed project). The proposed project is needed to replace the aged existing plant equipment and bring the production capabilities up to modern standards. The existing plant is currently permitted to produce up to 584,000 tons per year of “batch” hot mix asphalt (HMA) but because of the aged plant equipment, the plant is currently only capable of producing a maximum of approximately 200,000 tons per year of HMA. The proposed project would increase the production capacity of the plant from approximately 200,000 to 700,000 tons per year of HMA. The HMA produced by the plant is currently, and would continue to be, used by the City of Los Angeles BSS for road construction and maintenance.

The proposed project consists of the demolition of the existing Asphalt Plant No. 1, excavation and removal of contaminated soils, transportation of clean fill material onsite, construction of a modern plant, and construction of administration and maintenance building. It is anticipated that construction of the proposed project would take place over a period of approximately 25 months, from early August 2016 to early September 2018.

NAME AND ADDRESS OF APPLICANT IF OTHER THAN CITY AGENCY:

FINDING: The City Engineer of the City of Los Angeles has determined the proposed project could not have a significant effect on the environment. See attached Initial Study.

SEE THE ATTACHED PAGES FOR ANY MITIGATION MEASURES IMPOSED

Any written objections received during the public review period are attached, together with the responses of the lead City agency.

THE INITIAL STUDY PREPARED FOR THIS PROJECT IS ATTACHED

PERSON PREPARING THIS FORM: Maria Martin

ADDRESS: 1149 S. Broadway, Suite 600, MS 939
Los Angeles, CA 90015

TELEPHONE NUMBER: (213) 485-5753

SIGNATURE (Official):

Maria Martin, Environmental Affairs Officer
Environmental Management Group

DATE:
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronyms and Abbreviations</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Purpose of an Initial Study</td>
<td>1</td>
</tr>
<tr>
<td>Document Format</td>
<td>1</td>
</tr>
<tr>
<td>CEQA Process</td>
<td>2</td>
</tr>
<tr>
<td>Background and Project Overview</td>
<td>3</td>
</tr>
<tr>
<td>Project Description</td>
<td>7</td>
</tr>
<tr>
<td>Overview</td>
<td>7</td>
</tr>
<tr>
<td>Source of Materials and Asphalt Production</td>
<td>7</td>
</tr>
<tr>
<td>Components of the Project</td>
<td>7</td>
</tr>
<tr>
<td>Construction</td>
<td>11</td>
</tr>
<tr>
<td>Operation</td>
<td>14</td>
</tr>
<tr>
<td>Environmental Effects/Initial Study Checklist</td>
<td>15</td>
</tr>
<tr>
<td>I. Aesthetics</td>
<td>15</td>
</tr>
<tr>
<td>II. Agriculture and Forest Resources</td>
<td>21</td>
</tr>
<tr>
<td>III. Air Quality</td>
<td>24</td>
</tr>
<tr>
<td>IV. Biological Resources</td>
<td>34</td>
</tr>
<tr>
<td>V. Cultural Resources</td>
<td>38</td>
</tr>
<tr>
<td>VI. Geology and Soils</td>
<td>42</td>
</tr>
<tr>
<td>VII. Greenhouse Gas Emissions</td>
<td>47</td>
</tr>
<tr>
<td>VIII. Hazards and Hazardous Materials</td>
<td>53</td>
</tr>
<tr>
<td>IX. Hydrology and Water Quality</td>
<td>63</td>
</tr>
<tr>
<td>X. Land Use and Planning</td>
<td>69</td>
</tr>
<tr>
<td>XI. Mineral Resources</td>
<td>71</td>
</tr>
<tr>
<td>XII. Noise</td>
<td>73</td>
</tr>
<tr>
<td>XIII. Population and Housing</td>
<td>81</td>
</tr>
<tr>
<td>XIV. Public Services</td>
<td>83</td>
</tr>
<tr>
<td>XV. Recreation</td>
<td>86</td>
</tr>
<tr>
<td>XVI. Transportation/Traffic</td>
<td>88</td>
</tr>
<tr>
<td>XVII. Utilities and Service Systems</td>
<td>93</td>
</tr>
<tr>
<td>XVIII. Mandatory Findings of Significance</td>
<td>98</td>
</tr>
<tr>
<td>Determination</td>
<td>101</td>
</tr>
<tr>
<td>Preparation and Consultation</td>
<td>103</td>
</tr>
<tr>
<td>Preparers</td>
<td>103</td>
</tr>
<tr>
<td>Coordination and Consultation</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Project Site Location ... 3
Figure 2. Existing Site Layout ... 5
Figure 3. Proposed Site Layout .. 8
Figure 4. Indicative Construction Schedule and Phasing ... 12
Figure 5. View of existing asphalt production plant .. 16
Figure 6. View of covered aggregate storage bins .. 17
Figure 7. View of existing administration building with ornamental trees in the background 17

List of Tables

Table 1. California And National Ambient Air Quality Standards .. 24
Table 2. Attainment Status for Federal and State Regulated Pollutants in the Project Area .. 27
Table 3. SCAQMD Construction and Operational Emission Thresholds of Significance ... 28
Table 4. Worst Case Daily Construction Emissions .. 29
Table 5. Daily Operational Emissions .. 30
Table 6. Project Greenhouse Gas Emissions Increase in CO₂e .. 51
Table 7. Community Noise Exposure Level (dbA) .. 51
Table 8. City of Los Angeles Municipal Code Noise Regulations: Presumed Ambient Noise Level (dBA) Error! Bookmark not defined.

List of Appendixes

A Air Quality and Greenhouse Gas Impact Analysis, Asphalt Plant No. 1 Replacement and Modernization
B Traffic Impact Analysis, Asphalt Plant No. 1 Replacement and Modernization
C Cultural Resources Analysis for Asphalt Plan No. 1
D Asphalt Plant No. 1 Environmental Data Evaluation W.O. E1907820
E Hazardous Materials Survey Report
F Methane Mitigation Plan
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/m³</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bills</td>
</tr>
<tr>
<td>ATCM</td>
<td>airborne toxic control measures</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan</td>
</tr>
<tr>
<td>ARB</td>
<td>Air Resources Board</td>
</tr>
<tr>
<td>BACT</td>
<td>best available control measures</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California ambient air quality standards</td>
</tr>
<tr>
<td>CBC</td>
<td>2010 California Building Code</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CH2M</td>
<td>CH2M HILL Engineers, Inc.</td>
</tr>
<tr>
<td>City of Los Angeles BSS</td>
<td>City of Los Angeles, Department of Public Works Bureau of Street Services</td>
</tr>
<tr>
<td>CMU</td>
<td>concrete masonry unit</td>
</tr>
<tr>
<td>CNG</td>
<td>compressed natural gas</td>
</tr>
<tr>
<td>CO</td>
<td>carbon</td>
</tr>
<tr>
<td>CO2e</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historic Resource</td>
</tr>
<tr>
<td>DPM</td>
<td>diesel exhaust</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>GEO</td>
<td>Geotechnical Engineering Group</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>HAZWOPER</td>
<td>Hazardous Waste Operations and Emergency Response</td>
</tr>
<tr>
<td>HMA</td>
<td>hot mix asphalt</td>
</tr>
<tr>
<td>HSP</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>I</td>
<td>Interstate</td>
</tr>
<tr>
<td>IS</td>
<td>Initial Study</td>
</tr>
<tr>
<td>LAMC</td>
<td>City of Los Angeles Municipal Code</td>
</tr>
<tr>
<td>LADWP</td>
<td>Los Angeles Department of Water and Power</td>
</tr>
<tr>
<td>LARWQCB</td>
<td>Los Angeles Regional Water Quality Control Board</td>
</tr>
<tr>
<td>lb/day</td>
<td>pounds per day</td>
</tr>
<tr>
<td>LID</td>
<td>low impact development</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MLD</td>
<td>Most Likely Descendant</td>
</tr>
<tr>
<td>MND</td>
<td>Mitigated Negative Declaration</td>
</tr>
<tr>
<td>MRZ</td>
<td>Mineral Resource Zones</td>
</tr>
<tr>
<td>NAAQS</td>
<td>nationwide ambient air quality standards</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NO2</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOx</td>
<td>nitrogen oxide</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PID</td>
<td>Photo Ionization detector</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RAP</td>
<td>recycled asphalt product</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewables Portfolio Standard</td>
</tr>
<tr>
<td>SCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SoCalGas</td>
<td>Southern California Gas Company</td>
</tr>
<tr>
<td>SO2</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SOX</td>
<td>sulfur oxide</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>SWMPP</td>
<td>City of Los Angeles Solid Waste Management Policy Plan</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>TAC</td>
<td>toxic air contaminant</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbons</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WET</td>
<td>California Waste Extraction Test</td>
</tr>
</tbody>
</table>
Introduction

The City of Los Angeles (the City), Department of Public Works Bureau of Street Services (City of Los Angeles BSS) is proposing to replace and modernize Asphalt Plant No. 1 (the proposed project) located at 2484 E. Olympic Boulevard, Los Angeles, California. The City of Los Angeles, Bureau of Engineering Architectural Division is responsible for managing the proposed project on behalf of the client agency (City of Los Angeles BSS).

Purpose of an Initial Study

The California Environmental Quality Act (CEQA) was enacted in 1970 for the purpose of providing decision-makers and the public with information regarding environmental effects of proposed projects; identifying means of avoiding environmental damage; and disclosing to the public the reasons behind a project’s approval even if it leads to environmental damage. The City of Los Angeles has determined that the proposed project is subject to CEQA and no exemptions apply. Therefore, the preparation of an Initial Study (IS) is required.

An IS is a preliminary analysis conducted by the lead agency, in consultation with other agencies (responsible or trustee agencies, as applicable), to determine whether there is substantial evidence that a project may have a significant effect on the environment. If the IS concludes that the project, with mitigation, may have a significant effect on the environment, an Environmental Impact Report should be prepared; otherwise the lead agency may adopt a Negative Declaration or Mitigated Negative Declaration (MND).

The IS/MND contained herein has been prepared in accordance with CEQA (Public Resources Code §21000 et seq.), the State CEQA Guidelines (Title 14, California Code of Regulations, §15000 et seq.), and the City of Los Angeles CEQA Guidelines (1981, amended July 31, 2002).

Document Format

The IS/MND is organized into the following sections:

- **Introduction.** Provides an overview of the proposed project and the CEQA environmental review process.

- **Background and Project Overview.** Provides introductory information on the project including the lead agency, location, context and surrounding land uses and an overview of the proposed project.

- **Project Description.** Provides a description of the need for the project, the project components, and construction and operation of the proposed project.

- **Environmental Effects/Initial Study Checklist.** Presents the City’s Checklist for all impact areas and mandatory findings of significance.

- **Determination.** Provides the lead agency’s determination regarding the effect of the proposed project on the environment and the recommended environmental documentation for the proposed project.

- **Preparation and Consultation.** Provides a list of key personnel involved in the preparation of this report and key personnel consulted.

- **References.** Provides a list of reference materials used during preparation of this report.
• **Appendixes.** Includes technical reports and memorandums prepared as part of the IS.

CEQA Process

Once the adoption of an MND has been proposed, a public comment period opens for no less than 20 days or 30 days if there is state agency involvement. The purpose of this comment period is to provide public agencies and the general public an opportunity to review the IS and comment on the adequacy of the analysis and the findings of the lead agency regarding potential environmental impacts of the proposed project. If a reviewer believes the project may have a significant effect on the environment, the reviewer should identify the specific effect, explain why it is believed the effect would occur, and explain why it is believed the effect would be significant. Facts or expert opinion supported by facts should be provided as the basis of such comments.

After the close of the public review period, the Board of Public Works considers the MND, together with any comments received during the public review process, and makes a recommendation to the City Council on whether or not to approve the project. One or more Council committees may then review the proposal and documents and make its own recommendation to the full City Council. The City Council is the decision-making body and also considers the MND, together with any comments received during the public review process, in the final decision to approve or disapprove the project. During the project approval process, persons and/or agencies may address either the Board of Public Works or the City Council regarding the project. Public notification of agenda items for the Board of Public Works, Council committees and City Council is posted 72 hours prior to the public meeting. The Board of Public Works Agenda is available via the internet at http://www.bpw.lacity.org/. The Council agenda can be obtained by visiting the Council and Public Services Division of the Office of the City Clerk at City Hall, 200 North Spring Street, Suite 395, Los Angeles; by calling 213/978-1047, 213/978-1048 or TDD/TTY 213/978-1055; or via the internet at https://cityclerk.lacity.org/CouncilAgenda/

If the proposed project is approved, the City will file a Notice of Determination with the County Clerk within 5 days. The Notice of Determination will be posted by the County Clerk within 24 hours of receipt. This begins a 30-day statute of limitations on legal challenges to the approval under CEQA. The ability to challenge the approval in court may be limited to those persons who objected to the approval of the project, and to issues presented to the lead agency by any person, either orally or in writing, during the public comment period.

As a covered entity under Title II of the Americans with Disabilities Act, the City of Los Angeles does not discriminate on the basis of disability and, upon request, will provide reasonable accommodation to offer equal access to its programs, services, and activities.
Background and Project Overview

1. **Project Title:**

Asphalt Plant No. 1 Replacement and Modernization

2. **Lead Agency Name and Address:**

City of Los Angeles
Department of Public Works, Bureau of Engineering
1149 S. Broadway
Los Angeles, CA 90015

3. **Contact Persons and Phone Numbers:**

Reza Bagherzadeh
Sr. Environmental Engineer
Email: reza.bagherzadeh@lacity.org
(213) 485-4773

Maria Martin
Environmental Affairs Officer
Email: maria.martin@lacity.org
(213) 495-5753

4. **Project Location:**

Asphalt Plant No. 1 is located at 2484 E. Olympic Boulevard, Los Angeles, California (Figure 1).

![Figure 1. Project Site Location](image-url)
5. **Project Sponsor’s Name and Address:**

City of Los Angeles
Department of Public Works, Bureau of Street Services
1149 S. Broadway
Los Angeles, CA 90015

6. **General Plan Designation:**

The General Plan of the City of Los Angeles, Central City North Community Plan designates land use at the proposed project site as “heavy industrial”.

7. **Zoning:**

The proposed project site comprises parcels of land that are zoned “heavy industrial”.

8. **Description of Project:** (Describe the whole action involved, including but not limited to later phases of the project, and any secondary, support, or off-site features necessary for its implementation. Attach additional sheets if necessary.)

Refer to Project Description, provided below for a full project description.

9. **Surrounding Land Uses and Setting:** (Briefly describe the project’s surroundings)

The Asphalt Plant No. 1 property, and the property directly to the south, which is leased by the City for parking and equipment storage associated with the existing plant, is the location of the proposed project and is referred to as the proposed project site. The Asphalt Plant No.1 property is approximately 1.9 acres and the leased property is approximately 1 acre. The proposed project site is located in a heavy industrial area. It is bounded to the north by E. Olympic Boulevard and further to the north is a document destruction and waste paper recycling facility. Immediately to the west and south is a waste management facility. To the east of the proposed project site is a series of Amtrak railroad tracks, and beyond the tracks to the east (approximately 325 feet from the existing plant property) is the Los Angeles River (refer to Figure 2).
10. Other Public Agencies whose Approval is Required (e.g., permits, financing approval, or participation agreement):

The following permits are required:

- General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (the CGP, Order No. 2009-0009-DWQ, as amended by Order Nos. 2010-0014-DWQ and 2012-0006-DWQ, NPDES Permit No. CAS000002)

- Waste Discharge Requirements for Municipal Separate Storm Sewer System (MS4) Discharges Within the Coastal Watersheds of Los Angeles County, Except Those Discharges Originating from the City of Long Beach MS4 (the LA MS4 Permit, Order No. R4-2012-0175, NPDES Permit No. CAS004001).

- Single or annual-trip transportation permit for oversized loads and oversized vehicles from Caltrans.

- Single/30-day/or annual overload permit from the City of Los Angeles Bureau of Street Services.

- Hazardous materials transportation license from the California Highway Patrol.
• SCAQMD Permit to construct.
• SCAQMD Permit to operate for stationary emission sources at the plant.
Project Description

Overview

The City of Los Angeles BSS is proposing to replace and modernize Asphalt Plant No. 1 (the proposed project) located at 2484 E Olympic Boulevard, Los Angeles, California. The City’s Bureau of Engineering’s Architectural Division is responsible for managing the proposed project on behalf of the client agency (City of Los Angeles BSS).

The proposed project is needed to replace the aged existing plant equipment and bring the production capabilities up to modern standards. The existing plant is currently permitted to produce up to 584,000 tons per year of “batch” hot mix asphalt (HMA) but because of the aged plant equipment, the plant is currently only capable of producing a maximum of approximately 200,000 tons per year of HMA. The proposed project would increase the production capacity of the plant from approximately 200,000 to 700,000 tons per year of HMA. The HMA produced by the plant is currently, and would continue to be, used by the City of Los Angeles BSS for road construction and maintenance.

The proposed project would involve demolition of the existing Asphalt Plant No. 1, excavation of contaminated soils, transportation of clean fill material onsite, and construction of a modern plant. It is anticipated that construction of the proposed project would take place over a period of approximately 25 months, from early August 2016 to early September 2018. The proposed project would be at full operational capacity in Fall 2018.

Source of Materials and Asphalt Production

The existing Asphalt Plant No. 1 is currently permitted to produce up to 584,000 tons per year of HMA but because of the aged plant equipment, the plant is currently only capable of producing a maximum of approximately 200,000 tons per year or 950 tons per day of HMA. Producing this quantity of HMA requires approximately 20,000 tons per year of recycled asphalt product (RAP), approximately 170,000 tons per year of raw or virgin aggregate material, and 10,000 tons (or 285,000 gallons) per year of asphalt oil.

The proposed project would increase the production capacity of the plant from approximately 200,000 to 700,000 tons per year of HMA (a maximum of approximately 3,200 tons per day of HMA). This would necessitate an increase in the quantity of raw materials, requiring approximately 340,000 tons per year of RAP, approximately 340,000 tons per year of raw aggregate material, and 21,000 tons per year of asphalt oil. The proposed project would use a lower proportion of aggregate compared to the aged existing plant because it would be capable of producing HMA with a RAP content of up to 50 percent. The existing plant is only capable of producing HMA with a RAP content of up to 7.5 percent.

Based on existing contracts and prospects for future contracts, it is anticipated that the raw materials used to produce HMA would be sourced from within California. Raw aggregate and asphalt oil is currently sourced from suppliers in San Bernardino and Kern Counties, respectively. RAP is sourced from within the City of Los Angeles. The HMA produced by the plant is currently, and would continue to be, used by the City of Los Angeles BSS for road construction and maintenance.

Components of the Project

This section describes the key components of the proposed project including the administration/maintenance building; aggregate, RAP, and asphalt oil storage and handling systems; the HMA production and storage
system; control/electrical building; fuel island; vehicle entry, circulation and parking; and utilities, storm water management and lighting. The layout of the existing plant and the proposed project is shown in Figures 2 and 3, respectively.

Figure 3. Proposed Site Layout

Administration/Maintenance Building

The existing one story administration building located along the northern property line and the existing one story maintenance building located along the eastern property line would be demolished and replaced with a new one story administration/maintenance building, located in the northern portion of the site. It would have an administration area, maintenance storage and work areas, employee breakroom, amenities and lockers, and a conference room. The building would have a modern, industrialized visual character while at the same time addressing the City’s objectives relating to safety, maintenance and practicality. The building would be constructed of glass, concrete masonry unit (CMU), exposed raw steel, and concrete blocks. It would have minimal painting as a way of enhancing the industrialized look, and thus ensuring that it would require low maintenance. Skylights have been incorporated to minimize electrical costs. Artwork may be incorporated into the façade of the building.

Raw Aggregate Storage and Handling

Raw or virgin aggregate would be transported to the proposed project site by truck and unloaded through a truck dump hopper. Aggregate would be transferred from the hopper by enclosed conveyor to the raw aggregate storage system, which would consist of five silos with a capacity of approximately 600 tons each.
(3,000 tons total). The various sizes of aggregate needed for production would be stored in separate silos. The aggregate would be blended by percentage from the individual feeder belts under the aggregate silos to meet the desired mix design. The mixed aggregate would then be transported by enclosed conveyor across a small scalping screen used to discharge any foreign objects or trash from the aggregate before it is conveyed to the dryer drum.

Recycled Asphalt Product Storage and Handling

RAP would be transported to the proposed project site by truck and deposited into the RAP storage area, which would have a capacity of approximately 3,500 tons. A front end wheel loader would transfer the RAP from the storage area to a feed hopper, which would deposit the material onto a covered conveyor for transfer to a scalping screen. The scalping screen sorts the material by size, directing oversized material to a horizontal shaft impactor to be broken up and redirected through the scalping screen. Suitably sized product is conveyed from the screen to the dryer drum.

Asphalt Oil Storage and Handling

Asphalt oil would be transported to the proposed project site by tanker truck. The asphalt oil storage system would consist of three vertical tanks, each with a capacity of approximately 35,000 gallons (105,000 gallons total).

Hot Mix Asphalt Production and Storage System

HMA would be produced in the dryer drum. The raw aggregate and RAP would be added to the dryer drum at the same time. The raw aggregate would be heated in the dryer drum by an ultra-low nitrogen oxides (NOx) burner. The RAP would be added to the dryer drum at a location where the two materials come together. The RAP is not heated by the burner but heats up and dries out upon coming in contact with the aggregate.

The blended material would be discharged into a mixer where the asphalt oil would be metered in from one of the asphalt oil storage tanks and the combined materials would be mixed together in a continuous process. The mixer would be capable of producing HMA with a content of up to 50 percent RAP.

A bag house would be used as an air pollution control device for the dryer drum and burner. It would be self-cleaning and equipped with a bag house leak detection system, automatic high temperature shutoff, and enclosed valves to meet and exceed ‘New Source’ emissions requirements.

A blue smoke collection system would be installed to prevent the vapor (a haze of petroleum droplets) from escaping when HMA is transferred from the mixer to the storage silos. The blue smoke collection system would capture the vapor and use a fan to direct it back to the dryer drum where it would be incinerated by the burner flame.

The HMA silo storage system would consist of three 14-foot-diameter silos, each with a capacity of 300 tons and insulated with ceramic tile. The silos would be supported by silo ‘legs’ approximately 14 feet in length to provide ample clearance for trucks to park beneath the silos for filling. Windbreaks would be installed at each of the silo load out areas to enhance blue smoke control.

Control/Electrical Building

The control/electrical building would be a prefabricated building and a single-level control center. The process control room would have a state-of-the-art controls system with integrated computer-based control system with programmable logic controller (PLC) that provides centralized control and monitoring of HMA production. All plant activity would be graphically depicted on the computer screen in real-time.
Fuel Island
The existing fuel island and underground tank would remain in their current location in the north western corner of the proposed project site. The existing building located to the west of the fuel island dispensers would be demolished and the adjacent storage trailer would be removed to enable the fuel island dispenser to be located closer to the western boundary of the site. This would enable more efficient ingress to the site.

Vehicle Entry, Circulation and Parking
A single point of truck entry is proposed at the existing north western driveway located off the frontage road that runs parallel to E. Olympic Boulevard. The frontage road connects to E. Olympic Boulevard via a driveway approximately 400 feet to the west of the proposed project site. The frontage road also runs under the elevated portion of E. Olympic Boulevard and connects to Porter Street north of the site and another frontage road on the north side of E. Olympic Boulevard.

From the north western driveway, trucks accessing the site would travel along the western and southern sides of the plant property to a single egress point at the south eastern corner of the property. An auxiliary truck exit is proposed at the south portion of the plant and utilizes the leased property as an additional point of egress. A worker vehicle access point is proposed at the existing driveway in the north eastern corner of the property in order to separate truck movements from the movement of other vehicles (refer to Figure 3).

The proposed access and egress points and internal road layout has numerous advantages. Channeling truck movements along the western and southern sides of the plant would allow trucks to enter and exit the site without interfering with the workings of the plant. It also separates truck movements from working personnel accessing the maintenance/administration building and the control/electrical building. This maximizes worker safety by minimizing potential truck and pedestrian crossings. Truck traffic within the plant is proposed to be separated by use (asphalt oil delivery, aggregate and RAP delivery, and HMA pick up), maximizing plant efficiency. The internal road layout provides maximum onsite queuing for truck traffic.

The proposed project site currently has 12 parking spaces. The proposed project would provide approximately 16 parking spaces to accommodate staff and visitors.

Utilities, Storm Water Management and Lighting
Many of the existing utility lines at the proposed project site are degraded and/or under sized for the proposed modernization of the plant. The electrical and water lines are maintained and operated by Los Angeles Department of Water and Power (LADWP). The City has coordinated with LADWP regarding the need to upgrade the electricity and water lines to accommodate the proposed project. It is anticipated that a new circuit and underground cable would be needed to upgrade the electrical capacity. The existing water service lines at the proposed project site would be abandoned and new service lines would be installed and connected to the water main located along the frontage road. The Southern California Gas Company (SoCalGas) maintains a steel high-pressure gas main along the frontage road. The gas line to the proposed project site has already been identified by SoCalGas and would be upgraded in conjunction with modernizing the plant. Upgrades and reconstruction of sanitary sewer lines would be required. Fiber optic communication cable would need to be installed at the site.

The area of the proposed project site where the existing plant is located would be regraded to create a high point in the center of the property to allow storm water runoff to flow as overland flow and discharge into swales which would be constructed along the western and eastern perimeter. The swales would consist of surface graded permeable pavers which would have an impervious liner beneath a layer of soil. The swales would convey runoff to two drywells (refer to Figure 3). This system would comply with low impact development (LID) requirements, which require stormwater management strategies that seek to mitigate the
impacts of increases in runoff and stormwater pollution as close to its source as possible. The leased property portion of the proposed project site would not be regraded and swales would not be installed along the perimeter.

Landscaping and security lighting would be provided along the site perimeter. Landscaping would be minimal, consisting of above-ground tree boxes.

Construction

Construction of the proposed project would occur in phases over approximately 22 months, with construction commencing in early August 2016 and being completed in early May 2018. The peak construction period in terms of materials transportation and operation of heavy equipment is anticipated to occur in October 2016 when the site demolition removals and preparatory works, rough grading, and utility and civil works phases overlap. The indicative phases and timing of construction are shown in Figure 4 and described as follows:

- **Mobilization and implementation of the Stormwater Pollution Prevention Plan (SWPPP).** During mobilization, temporary utilities and facilities would be provided at the proposed project site. These would include temporary electricity supply; a construction administration site office and amenities; laydown areas for construction materials and equipment; temporary car parking to accommodate the peak construction workforce; and a temporary construction vehicle entrance. The temporary construction entrance would be from the frontage road that runs along the northern boundary of the proposed project site, parallel to E. Olympic Boulevard. The heavy equipment required for building demolition would be brought onsite during mobilization. Temporary drainage and erosion control measures would be installed consistent with the SWPPP.

- **Building demolition.** This phase would involve demolition of the majority of existing plant buildings and structures. Only the existing fuel island and underground tank would remain in their current location in the north western corner of the proposed project site. It is estimated that demolition would generate approximately 4,600 cubic yards of demolition material which would be recycled provided the material is not hazardous. As detailed in Section VIII Hazards and Hazardous Materials, a hazardous materials survey of the plant buildings and equipment was conducted and hazardous materials such as asbestos and lead were identified. These materials would be removed by qualified professionals prior to demolition and disposed of at an appropriately licensed hazardous waste facility.

- **Site demolition removals and preparatory work.** During this phase, building demolition materials other than those that are considered hazardous would be removed from the site. With the exception of demolition materials that contain hazardous materials such as asbestos and lead, it is anticipated that the majority of demolition materials would be suitable for recycling and would be transported to local recycling facilities. There is an existing tunnel/bunker that would be abandoned in place and filled with slurry that would seal the tunnel. The use of slurry instead of traditional soil compaction would create adequate support over the tunnel.
Figure 4. Indicative Construction Schedule and Phasing

- **Rough grading.** This phase would involve excavation of contaminated soil, offsite removal of contaminated soil, transportation of clean fill material onsite, and compaction and grading of the proposed project site. As detailed in Section VIII of this IS, soils at the proposed project site are contaminated by hydrocarbons and volatile organic compounds (VOCs) and it was recommended that the project be designed to limit excavation at the site as much as possible. While the project has been designed to minimize excavation, it is estimated that approximately 10,680 cubic yards of contaminated soil would need to be excavated and removed from the site. Contaminated soils encountered during excavation would be stored onsite in containers or stockpiles and transported offsite over a period of no less than four months. Contaminated soil classified as hazardous waste would be removed from the proposed project site in accordance with regulatory time limits. For example, VOC contaminated soil, as defined by the South Coast Air Quality Management District (SCAQMD), would be transported offsite within 30 days of excavation (refer to Section VIII of this IS for details). Transport of contaminated soils offsite would be performed by licensed hazardous waste haulers. Disposal would comply with applicable local, state, and federal regulations governing disposal of hazardous materials, including transport by a licensed waste hauler and disposal at a properly certified facility within California. It is estimated that approximately 14,300 cubic yards of clean fill material would be required to back fill the proposed project site. The proposed project site would be graded to create a high point in the center of the Asphalt Plant No. 1 property (approximately 3 feet higher than the existing ground surface) and provide a stable construction surface for the plant buildings and equipment.
• **Utility and civil work.** As detailed above, many of the existing utility lines at the proposed project site are degraded and/or under sized for the proposed modernization of the plant and would need to be upgraded. The swales and drywells would also be installed during this phase of construction.

• **Initial and final paving.** Initial paving would be conducted following completion of the utility and civil work. Initial paving would be conducted in the non-structural and plant site areas. Concrete and asphalt for paving would be mixed offsite and delivered to the site.

• **Foundation construction.** Once the utility, civil, and initial paving work has been completed the building foundations would be constructed. As detailed in Section VIII Hazards and Hazardous Materials, the proposed project site is located in a methane zone and therefore the proposed project has been designed to incorporate a passive vent system for the purpose of venting methane gas. The passive vent system would be installed beneath the building foundation. Because the project site is located in an area which is susceptible to seismic ground shaking in the event of an earthquake, the proposed project design would incorporate steel piles driven into the ground and connected to a reinforced concrete basemat building foundation. Pile driving would be conducted over a period of approximately 30 days.

• **Plant equipment installation and building construction.** Once rough grading and the majority of the utility and civil work has been completed, construction of the buildings and equipment installation would commence. Once the building foundation has been installed, the administration/maintenance building would be constructed and the fixed site equipment installed. The fixed site equipment would be manufactured with plates and connectors, which would be anchored to the basemat building foundation. Many of the large pieces of fixed site equipment would be preassembled and transported to the proposed project site on oversized vehicles. The control/electrical building would be a prefabricated building and therefore construction associated with this building would be minimal.

Mechanical and electrical commissioning of the plant and equipment would be conducted following completion of plant equipment installation and building construction.

Heavy equipment used during construction would include excavators, backhoes, loaders, bulldozers, cranes, graders, rollers, pavers, pile drivers, drill rigs, forklifts, dump trucks, flatbed trucks, water trucks, and dump trucks. An indicative construction equipment list by construction phase is provided in the Air Quality and Greenhouse Gas Technical Report, included as Appendix A.

Temporary flood lighting would be utilized at the proposed project site to allow construction under limited natural lighting conditions. This would typically only be required during the winter months in the early morning hours and evening periods of low light since construction would not be conducted during the nighttime.

An SWPPP incorporating Best Management Practices (BMPs) for erosion control would be prepared prior to the start of construction in accordance with regulatory requirements and implemented throughout construction in order to reduce the potential for soil erosion.

The construction workforce required for the proposed project would fluctuate throughout the construction period depending on construction activities. The construction workforce would peak at approximately 25 workers.

The number of vehicle movements to and from the site would vary throughout the construction period. Peak vehicle movements would be generated during site demolition removals and preparatory work and the rough grading phases of construction. Peak construction would generate approximately 100 construction personnel vehicle trips per day and two shifts per day. This assumes a ratio of one construction personnel per vehicle. A
total of approximately 35 truck trips per day would be generated during the peak construction period. Construction vehicles would access the proposed project site via the frontage road, which runs parallel to E Olympic Boulevard.

Construction of the proposed project would be carried out over two eight hour shifts per day. Construction hours would be between 7 a.m. and 9 p.m. Monday to Friday. No construction work would be carried out on Saturdays, Sundays or public holidays.

Operation

The existing plant currently operates seven days a week between the hours of 5 a.m. and 3 p.m. Delivery of material including aggregate, RAP, asphalt oil and HMA, and administrative activities occur between the hours of 5 a.m. and 3 p.m. HMA production takes place between the hours of 6 a.m. and 2 p.m. The proposed project would have the same days and hours of operation.

The existing plant currently employs 12 full time personnel who work a single shift of 8 to 10 hours. The proposed project would maintain this number of personnel.

The existing plant currently generates approximately 12 light vehicles (24 vehicle movements) and 117 heavy vehicles (234 heavy vehicle movements) per day. Light vehicles consist primarily of employee vehicles and heavy vehicles include trucks delivering aggregate, RAP, and oil to the plant and trucks picking up HMA. The proposed project would generate an additional 97 heavy vehicles (194 heavy vehicle movements) per day over current operations for a total of 214 heavy vehicles (428 heavy vehicle movements) per day. To minimize heavy vehicle movements associated with the proposed project, the City has committed to utilizing trucks with a capacity of 18 tons rather than 12 tons to transport RAP and HMA. The City has also made a commitment that 90 percent of City-owned RAP and HMA trucks would be compressed natural gas (CNG)-fueled and to providing incentives for commercially independent trucking companies serving the proposed project to use CNG-fueled vehicles. The proposed project would not generate any additional light vehicle movements.

The majority of vehicles currently, and would continue to, access the proposed project site via S. Santa Fe Avenue, Porter Street and the frontage road that runs parallel to E. Olympic Boulevard. It is estimated that 90 percent of vehicles currently accessing the site use this route; the remaining 10 percent use E. Olympic Boulevard and the frontage road. As detailed in Section XVI Transportation and Traffic of this IS, the proposed project would direct 25 percent of vehicles to the frontage roads (to the north and south of E. Olympic Boulevard) and E. Olympic Boulevard and 75 percent would use the frontage road, Porter Street and S. Santa Fe Avenue.
Environmental Effects/Initial Study Checklist

This section analyzes and documents potential environmental impacts that could result from the proposed project. The resource sections and questions in this section follow the IS Checklist form developed by the Governor’s Office of Planning and Research (2012). The IS Checklist form was used in conjunction with the Los Angeles CEQA Thresholds Guide and other sources to screen and focus upon potential environmental impacts resulting from the proposed project. The impacts are separated into the following categories:

- **No Impact.** This category applies when a project would not create an impact in the specific environmental issue area. A “No Impact” finding does not require an explanation when the finding is adequately supported by the cited information sources (e.g., exposure to a tsunami is clearly not a risk for projects not near the coast). A finding of “No Impact” is explained where the finding is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

- **Less Than Significant Impact.** This category is identified when the project would result in impacts below the significance threshold, and therefore there would be less than significant impacts.

- **Less Than Significant With Mitigation Incorporated.** This category applies where the incorporation of mitigation measures would reduce a “Potentially Significant Impact” to a “Less Than Significant Impact.” The mitigation measures are described briefly along with a brief explanation of how they would reduce the effect to a less than significant level. There are no such impacts for the proposed project.

- **Potentially Significant Impact.** This category is applicable if there is substantial evidence that a significant adverse effect might occur, and no feasible mitigation measures could be identified to reduce impacts to a less than significant level. If there are one or more “Potentially Significant Impact” entries when the determination is made, an Environmental Impact Report is required. There are no such impacts for the proposed project.

Significance thresholds are presented in each of the resource sections below and are based on guidance provided in the Los Angeles CEQA Thresholds Guide (City of Los Angeles, 2006). Any additional documents or regulations used to identify significance thresholds are referenced in the appropriate section.

I. Aesthetics

Environmental Setting

The proposed project site is highly developed and disturbed, consisting of the asphalt recycling and production plant with ancillary buildings and asphalt-concrete areas, and the property leased by the City for parking and equipment storage associated with the existing plant. The existing facilities at the plant include covered aggregate storage bins, RAP storage bins, above ground and subterranean conveyor systems, asphalt processing equipment, a gas and oil building, fuel dispenser, a single story administration building, and single story maintenance building (refer to Figure 2). The existing plant was constructed in 1946, and while it was upgraded and modernized over the years it has the visual appearance of an aged industrial facility (refer to Figures 5, 6, and 7). The property leased by the City for parking and equipment storage consists entirely of an asphalt-concrete paved surface. The perimeter of the proposed project site is surrounded by a wire security fence. There is security lighting at the perimeter of the proposed project site directed to prevent light spill beyond the site boundary. This is similar to street lighting in terms of illumination. Landscaping at the proposed project site is limited to a small stand of ornamental trees near the existing administration building.
The topography of the proposed project site and the area surrounding the site is relatively flat. The site has a very gentle slope to the north and south.

The proposed project site is situated in a heavy industrial area. It is bounded to the north by E. Olympic Boulevard and further to the north is a document destruction and waste paper recycling facility. Immediately to the west and south is a waste management facility. To the east of the site is a series of Amtrak railroad tracks, and beyond the tracks to the east (approximately 325 feet from the existing plant property) is the Los Angeles River, which is in a paved trapezoidal channel in this area (refer to Figure 2). There is street lighting on E. Olympic Boulevard and other streets surrounding the site. Industrial properties surrounding the proposed project site have security lighting.

The nearest sensitive receptor to the proposed project site is the multi-family residential area of Rio Vista Village which is located approximately 1,500 feet to the east. The Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights is located approximately 2,100 feet east of the site.

There are no scenic vistas or state scenic highways in the vicinity of the proposed project site. The portion of State Route 2 that passes to the north and west of Mount San Antonio is an officially designated state scenic highway. The highway is located approximately 15 miles to the north east of the proposed project site. The portion of Interstate (I) 210 near Pasadena is an eligible state scenic highway but has not been officially designated is located approximately 9 miles north of the proposed project site (http://www.dot.ca.gov/hq/LandArch/scenic_highways/).
Figure 6. View of covered aggregate storage bins

Figure 7. View of existing administration building with ornamental trees in the background
Impact Assessment

a) Would the project have a substantial adverse effect on a scenic vista?

Significance Threshold: A scenic vista generally provides focal views of objects, settings, or features of visual interest; or panoramic views of large geographic areas of scenic quality, primarily from a given vantage point. A significant impact may occur if the proposed project introduced incompatible visual elements within a field of view containing a scenic vista or substantially altered a view of a scenic vista.

There are no scenic vistas in close proximity to the proposed project site and therefore the proposed project would have no impact on a scenic vista.

b) Would the project substantially damage scenic resources, including but not limited to, trees, rock outcroppings, and historic buildings within a State scenic highway?

Significance Threshold: A significant impact may occur where scenic resources within a state scenic highway would be damaged or removed as a result of the proposed project.

The proposed project would not have an impact on scenic resources, including trees, rock outcroppings, and historic buildings within a state scenic highway. The existing ornamental trees onsite are limited and isolated and do not represent a scenic resource. There are no state scenic highways in the vicinity of the proposed project site and therefore the proposed project would have no impact on scenic resources within a state scenic highway.

c) Would the project substantially degrade the existing visual character or quality of the site and its surroundings?

Significance Threshold: A significant impact may occur if the proposed project introduced incompatible visual elements to the proposed project site or visual elements that would be incompatible with the character of the surrounding area.

The proposed project would not degrade the existing visual character or quality of the site or its surrounds. The site is located in an existing heavy industrial area and the nearest sensitive receptors are located to the east of the proposed project site, in Rio Vista Village and Boyle Heights. Views of the site from these receptors are obscured by the elevated section of E. Olympic Boulevard and multi-story buildings located between the proposed project site and these areas.

Construction of the proposed project would result in temporary changes to the visual appearance of the site, however, these changes would occur over a relatively short construction period of approximately 22 months and some of the construction activities such as stockpiling material and the movement of heavy vehicles is consistent with the visual character of the existing plant. The construction activities at the proposed project site would only be visible from the industrial properties surrounding the site and by motorists on E. Olympic Boulevard.

The proposed project would demolish the existing aged plant and replace it with a modern plant and ancillary buildings with an industrial visual character and scale that would be compatible with the surrounding industrial area. The height of the proposed plant and ancillary buildings would be similar to that of the existing plant. Construction of a modern plant with perimeter landscaping would result in an improvement to the visual character of the site and its surrounds. Landscaping would be selected, installed, and maintained consistent with the requirements of the City of Los Angeles Landscape Ordinance No. 170,978 (Los Angeles City Planning Department, 2005).
The proposed project would improve and not substantially degrade the existing visual character of the site, and the impact would be less than significant.

d) Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Significance Threshold: A significant impact would occur if the proposed project caused a substantial increase in ambient illumination levels beyond the property line or caused new lighting to spill-over onto light-sensitive land uses such as residential, some commercial and institutional uses that require minimum illumination for proper function, and natural areas.

Construction would take place 14 hours a day and lighting would be required during the early morning and evening hours, and possibly at other times of the day during the winter months when natural light is low. The industrial areas surrounding the proposed project site are not light-sensitive. Nevertheless, construction lighting would be positioned to minimize the extent of light spill beyond the site boundary. Construction lighting is not anticipated to have an impact on nighttime views in the area particularly considering there are no scenic vistas or other sensitive receptors in close proximity to the proposed project site.

The existing plant has security lighting along the perimeter. The proposed project would also have security lighting along the perimeter of the site and would not create a new source of light in the area. The lighting intensity would be similar to that of the existing plant and would be directed to prevent light spill beyond the site boundary. The proposed project would have no impact on nighttime views in the area.

The buildings to be constructed as part of the proposed project would be constructed predominantly of materials such as CMU and exposed concrete blocks, which would not cause glare. Some glass windows would be installed in the buildings but they are not anticipated to create a substantial new source of glare that would adversely affect daytime views in the area and there would be no impact.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including but not limited to, trees, rock outcroppings, and historic buildings within a State scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
Mitigation Measures

No mitigation necessary.
II. Agriculture and Forest Resources

Environmental Setting
The proposed project would be constructed on approximately 1.9 acres of land that is the site of the existing Asphalt Plant No. 1. The proposed project would also continue to utilize the 1-acre leased property to the south. The 2.9-acre project site is almost completely covered by pavement and buildings, and is surrounded by heavy industrial land uses, where properties are also highly disturbed and primarily paved. According to the 2012 Los Angeles County Important Farmland map, generated by the California Natural Resources Agency (California Natural Resources Agency, 2012), there is no Prime Farmland, Farmland of Statewide Importance, Unique Farmland, Farmland of Local Importance, or Grazing Land present on the proposed project site. In addition, the City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001) identifies a parcel associated with Pierce College in Woodland Hills, more than 20 miles away from the proposed project site, as the last state-designated significant agricultural parcel within the City. The City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001) also states that the only remaining substantial conifer and big tree forests within the immediate Los Angeles city area are located outside the City’s boundaries within the Angeles National Forest.

Impact Assessment

a) Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?

Significance Threshold: A significant impact may occur if the proposed project were to result in the conversion of state-designated agricultural land from agricultural use to a non-agricultural use.

The proposed project would be constructed entirely on the existing asphalt plant site where there is no prime or unique farmland, or farmland of statewide importance present according to 2012 Los Angeles County Important Farmland Map (California Natural Resources Agency, 2012), and according to the City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001). The proposed project site is not located on or near any property zoned or otherwise intended for agricultural uses, therefore no state-designated agricultural land would be converted as a result of the proposed project and no impact would occur.

b) Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

Significance Threshold: A significant impact may occur if the proposed project were to result in the conversion of land zoned for agricultural use, or indicated under a Williamson Act contract, from agricultural use to a non-agricultural use.

No land on or near the proposed project site is zoned for, or contains, agricultural uses, and the parcels where the proposed project would be constructed are zoned as “heavy industrial” (City of Los Angeles, 2000). Further, the City of Los Angeles does not participate in the Williamson Act, and there are no Williamson Act properties in the City of Los Angeles. Therefore, construction and operation of the proposed project would not conflict with existing zoning for agricultural use, or a Williamson Act contract, and no impact would occur.
c) Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

Significance Threshold: A significant impact may occur if the proposed project were to conflict with an existing zoning classification of forest land or timberland, or cause rezoning of an area classified as forest land or timberland.

As stated in the City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001), there are no forest lands present within the City of Los Angeles and the parcels where the proposed project would be constructed are zoned as “heavy industrial” (City of Los Angeles, 2000), therefore, construction and operation of the proposed project would not conflict with existing zoning for forest land or timberland, or cause rezoning of an area classified as forest land or timberland, and no impact would occur.

d) Would the project result in the loss of forest land or conversion of forest land to non-forest use?

Significance Threshold: See II (c) above.

As stated in the City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001), there are no forest lands present within the City and the parcels where the proposed project would be constructed are zoned as “heavy industrial” (City of Los Angeles, 2000). Therefore, construction and operation of the proposed project would not result in the loss of forest land or conversion of forest land to non-forest use and no impact would occur.

e) Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

Significance Threshold: See II (a) and II (c) above.

There is no Farmland present on or near the proposed project site, and as stated in the City of Los Angeles General Plan Conservation Element (City of Los Angeles, 2001), there are no forest lands present within the City. Therefore, construction and operation of the proposed project would not involve changes in the existing environment that could result in conversion of farmland to non-agricultural use or conversion of forest land to non-forest use and no impact would occur.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to a non-agricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
Potentially Significant Impact

<table>
<thead>
<tr>
<th>Conflict with existing zoning for agricultural use, or a Williamson Act contract?</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220[g]), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104[g])?</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result in the loss of forest land or conversion of forest land to non-forest use?</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Involve other changes in the existing environment which, due to their location and nature, could result in conversion of Farmland to non-forest use?</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
III. Air Quality

Environmental Setting

Regulatory Framework

Responsibility for attaining and maintaining ambient air quality standards in California is divided between the Air Resource Board (ARB) and regional air pollution control or air quality management districts. Areas of control for the regional districts and geographic air basins are established by ARB. The air basins are based largely on topography that limits airflow, or by county boundaries. The proposed project would be in the South Coast Air Basin (SCAB), under the jurisdiction of SCAQMD.

This section provides a summary of the regulations at federal, state, and local levels. Detailed descriptions of the regulations can be found in Appendix A.

Federal Clean Air Act and National Ambient Air Quality Standards

Federal air quality policies are regulated through the federal Clean Air Act (CAA), enacted by Congress in 1970, and amended in 1977 and 1990. Pursuant to the CAA, EPA has established nationwide ambient air quality standards (NAAQS) to protect public health and welfare with an adequate margin of safety. NAAQS have been developed for seven criteria pollutants: ozone, nitrogen dioxide (NO₂), CO, PM₁₀ and PM₂.₅, sulfur dioxide (SO₂), and lead. These pollutants are referred to as criteria pollutants because numerical health-based criteria have been established that define acceptable levels of exposure for each pollutant. The NAAQS represent safe ambient concentrations for each pollutant to avoid specific adverse effects to human health and the environment. A summary of the NAAQS is provided in Table 1.

California Air Quality Standards and California Clean Air Act

The ARB oversees California air quality policies. California ambient air quality standards (CAAQS) were first established in 1969 pursuant to the Mulford-Carrell Act. These standards are generally more stringent than the NAAQS and include the NAAQS pollutants plus four additional pollutants—sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particulates. The California CAA, which was approved in 1988, requires each local air district with ambient concentrations that violate the state standards to prepare an Air Quality Management Plan (AQMP) to achieve compliance with the CAAQS as a part of the SIP. Relevant CAAQS are listed in Table 1.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>CAAQS</th>
<th>NAAQS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Ozone</td>
<td>8 hours</td>
<td>0.070 ppm</td>
<td>0.070 ppm</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>0.070 ppm</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Annual Arithmetic Mean 24 hours</td>
<td>20 µg/m³</td>
<td>12 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 µg/m³</td>
<td>12 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Annual Arithmetic Mean 24 hours</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>35 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 µg/m³</td>
<td>35 µg/m³</td>
</tr>
<tr>
<td>CO</td>
<td>8 hours</td>
<td>9.0 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>20 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>NO₂</td>
<td>Annual Arithmetic Mean 1 hour</td>
<td>0.03 ppm</td>
<td>0.053 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18 ppm</td>
<td>0.100 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.053 ppm</td>
</tr>
</tbody>
</table>
In addition to criteria pollutants, California also regulates toxic air contaminants (TACs) through its Air Toxics Program, which is mandated in Chapter 3.5 of the Health and Safety Code – Toxic Air Contaminants, and Part 6 – Air Toxics Hot Spots Information and Assessment (H&SC Sections 39660 et seq. and 44300 et seq., respectively). In 1998, the California Environmental Protection Agency’s Office of Environmental Health Hazard Assessment completed a comprehensive health assessment of diesel exhaust. This assessment formed the basis for a decision by the ARB to formally identify particulate matter in diesel exhaust (DPM) as a TAC that may pose a threat to human health. The ARB has adopted a Diesel Risk Reduction Plan and a series of airborne toxic control measures (ATCMs) for mobile and stationary sources intended to reduce overall DPM emissions in California (ARB, 2015a). The recommended measures can be grouped as follows: measures addressing on-road vehicles; measures addressing off-road equipment and vehicles; and measures addressing stationary and portable engines.

South Coast Air Quality Management District

The proposed project site is located in the City within the South Coast Air Basin (SCAB) and under the jurisdiction of SCAQMD. SCAQMD is the local agency responsible for ensuring that federal and state ambient air quality standards are attained and maintained in the SCAB.

The SCAQMD prepares the AQMP, which contains measures to comply with state and federal requirements. The most recent SCAQMD-adopted AQMP is the final 2012 AQMP that the SCAQMD Governing Board adopted on December 7, 2012. The 2012 AQMP incorporates the latest scientific and technical information and planning assumptions, including the Southern California Association of Governments’ 2012 Regional Transportation Plan/Sustainable Communities Strategy, updated emission inventory methodologies for various source categories, and the latest growth forecasts. Currently, SCAQMD is in the process of developing the 2016 AQMP, which would be a comprehensive and integrated plan primarily focused on achieving compliance with the ozone and PM2.5 standards (SCAQMD, 2015).

The SCAQMD is the regional agency responsible for rulemaking, permitting, and enforcement activities affecting stationary sources in the SCAB. Specific rules and regulations adopted by the SCAQMD limit the emissions that

Table 1. California and National Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>CAAQS</th>
<th>NAAQS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>SO₂</td>
<td>Annual</td>
<td>--</td>
<td>0.03 ppm (certain areas)</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>0.04 ppm</td>
<td>0.14 ppm (certain areas)</td>
</tr>
<tr>
<td></td>
<td>3 hours</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>0.075 ppm</td>
</tr>
<tr>
<td>Lead<sup>a</sup></td>
<td>Calendar Quarter</td>
<td>--</td>
<td>1.5 µg/m³</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-month Average</td>
<td>--</td>
<td>0.15 µg/m³</td>
</tr>
<tr>
<td></td>
<td>30-day Average</td>
<td>1.5 µg/m³</td>
<td>0.15 µg/m³</td>
</tr>
<tr>
<td>Visibility-reducing Particles</td>
<td>8 hours</td>
<td><sup>a</sup></td>
<td>--</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 hours</td>
<td>25 µg/m³</td>
<td>--</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 hour</td>
<td>0.03 ppm</td>
<td>--</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>24 hours</td>
<td>0.01 ppm</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
- ^a Insufficient amount to produce an extinction coefficient of 0.23 per kilometer due to particles when the relative humidity is less than 70 percent.
- µg/m³ = micrograms per cubic meter
- ppm = parts per million (by volume)

Source: ARB, 2015b
can be generated by various activities, and identify specific pollution reduction measures that must be implemented in association with various activities. Applicable rules to the proposed project would include, but would not be limited to the following:

- **Regulation II: Permits**
- **Regulation IV: Prohibitions, such as:**
 - Rule 401: Visible Emissions
 - Rule 402: Nuisance
 - Rule 403: Fugitive Dust
- **Regulation XI: Source Specific Standards, such as:**
 - Rule 1146.1 Emissions of Oxides of Nitrogen from Small Industrial, Institutional, and Commercial Boilers, Steam Generators, and Process Heaters
 - Rule 1147 NOx Reductions from Miscellaneous Sources
 - Rule 1157: PM10 Emission Reductions from Aggregate and Related Operations
 - Rule 1166: VOCs from Decontamination of Soils
- **Regulation XIII: New Source Review (for criteria pollutants), including requirements for emission offsets, best available control technology, and air dispersion modeling requirements.**
- **Regulation XIV: Toxics and Other Non-Criteria Pollutants, including the health risk thresholds for permitting.**

City of Los Angeles General Plan

Development in the area of the proposed project is governed by the policies, procedures, and standards set forth in the General Plan. The General Plan is prepared and maintained by the Department of City Planning. It is a comprehensive, long-range declaration of purposes, policies, and programs for the development of the City.

Existing Conditions

Topographic and Climate

The proposed project would be located in the SCAB, which has high air pollution potential due to its climate and topography. The climate of the basin is characterized by warm summers, mild winters, infrequent rainfall, light winds, and moderate humidity. This mild climatological pattern is interrupted infrequently by extremely hot summers, winter storms, and Santa Ana winds. At times, the SCAB may experience temperature inversions, a condition characterized by an increase in temperature with an increase in altitude. With an upper layer of warm air mass over the cool marine layer, air pollutants are prevented from dispersing upward. Additional air quality problems in the SCAB can be attributed to the bright sunshine, which may cause a photochemical reaction between hydrocarbons and oxides of nitrogen to form ozone, or smog. During fall and winter, the greatest pollution problems are CO and NOx emissions, which become trapped and concentrated by an inversion layer.

Existing Air Quality

The proposed project would be located in an area of Los Angeles County that has been designated by EPA as nonattainment for the NAAQS for ozone, PM2.5, and lead, and as maintenance for the NAAQS for PM10, CO, and NO2. Under CAAQS, the area is designated as nonattainment for ozone, PM10, PM2.5, NO2, and lead, and as
attainment for CO. Other pollutants are not classified under the NAAQS or CAAQS. A summary of the attainment status of each pollutant under the federal and state standards is presented in Table 2.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>State Designation</th>
<th>Federal Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (8-hour)</td>
<td>Nonattainment</td>
<td>Extreme Nonattainment</td>
</tr>
<tr>
<td>Ozone (1-hour)</td>
<td>Nonattainment</td>
<td>Revoked [70 FR 44470]</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Nonattainment</td>
<td>Attainment/Maintenance</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Nonattainment</td>
<td>Moderate Nonattainment</td>
</tr>
<tr>
<td>CO</td>
<td>Attainment</td>
<td>Attainment/Maintenance</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Attainment</td>
<td>Attainment/Maintenance (annual)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attainment/Unclassified (1-hour)</td>
</tr>
<tr>
<td>Lead</td>
<td>Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>All Others</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Sources: ARB, 2014b; EPA, 2015

Sensitive Receptors

Land uses identified to represent sensitive receptors in the *CEQA Air Quality Analysis Guidance Handbook* include residences, schools, playgrounds, child care centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes (SCAQMD, 1993 updated through 2015). The proposed project is located in an industrial area. The closest residential receptors are located approximately 1,500 feet east of the facility, and the closest school is approximately 2,100 feet from the proposed project site.

Impact Assessment

a) Would the project conflict with or obstruct implementation of the applicable air quality plan?

Significance Threshold: A significant impact may occur if the proposed project would conflict with or obstruct implementation of the applicable air quality plan.

Air quality plans include strategies designed to reduce air pollutant emissions and comply with federal and state air quality standards. The proposed project is designed to replace the existing asphalt plant, which has been operating for many years with outdated technology and equipment, with modernized technology. The new plant would operate more efficiently and would be required to meet more stringent emission standards. In addition, as discussed in the following section, operational emissions estimated for the proposed project would be below the SCAQMD CEQA significance thresholds. Therefore, the proposed project operation would not conflict the AQMP’s emission reduction goals.

The proposed project would be constructed in compliance with the applicable SCAQMD regulations and policies, and best management practices (BMPs) would be implemented to reduce emissions from both construction and operation. In order to minimize the air pollutant emissions on a daily basis and to avoid large numbers of trucks operating simultaneously near the proposed project site, haul truck trips for excavated soil exporting would be required to occur over a period of no less than four months. The proposed project would comply with SCAQMD Rule 1166 for the excavation of VOC-contaminated soil during construction, Rule 1403 for asbestos from demolition and excavation, and Rule 403 to minimize fugitive dust emissions. Fugitive dust control measures specified in SCAQMD Rule 403, Table 1, include but are not limited to the following:
• General – Apply water in sufficient quantities to prevent the generation of visible dust plumes. Implement BMPs from the BMP manual to prevent vehicle track-out.

• For Bulk Materials – Maintain storage piles to avoid steep sides or faces.

• For Trenching – Stabilize surface soils where trencher or excavator and support equipment would operate, and stabilize soils at the completion of trenching activities. For deep trenching activities, pre-trench to 18 inches, soak soils via the pre-trench, and resume trenching. Wash mud and soils from equipment at the conclusion of trenching activities to prevent crusting and drying of soil on equipment.

• For Backfilling- Stabilize backfill material and soil. Empty loader bucket slowly so that no dust plumes are generated. Minimize drop height from loader bucket.

• For Staging Areas – Stabilize staging areas during use, and stabilize staging area soils at project completion. Limit the size of staging areas. Limit vehicle speeds to 15 miles per hour. Limit the number and size of staging area entrances/exits.

• For Off-road Traffic and Parking Areas – Stabilize all off-road traffic and parking areas, and direct construction traffic over established routes. Barriers would be used to ensure vehicles are only used on established parking areas and routes.

• Truck loading/Material Transport – Use tarps or suitable enclosures on haul trucks, pre-water material prior to loading, and ensure six inches of freeboard.

In conclusion, proposed project construction and operation would be consistent with the regional and local air quality planning strategy, and the proposed project would not conflict with or obstruct implementation of the applicable air quality plans.

b) Would the project violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Significance Threshold: A significant impact may occur if the proposed project would violate any air quality standard or contribute substantially to an existing or projected air quality violation.

The City relies on significance thresholds recommended by SCAQMD in the CEQA Air Quality Analysis Guidance Handbook to determine whether proposed projects would have significant impacts to air quality (SCAQMD, 1993 updated through 2015). The CEQA Air Quality Analysis Guidance Handbook lists the construction and operational emissions significance thresholds (shown in Table 3). Air quality impacts resulting from construction and operation of a project will be deemed significant if daily emission estimates are above these significance thresholds (SCAQMD, 1993 updated through 2015).

Table 3. SCAQMD Construction and Operational Emission Thresholds of Significance

<table>
<thead>
<tr>
<th>Criteria Air Pollutant</th>
<th>SCAQMD Project Construction Threshold (lb/day)</th>
<th>SCAQMD Project Operation Threshold (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>VOC</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>SOx</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>PM10</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>PM2.5</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Lead</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

lb/day = pounds per day
Source: SCAQMD, 1993
SCAQMD’s health risk significance thresholds for air toxics will be used to evaluate the potential impact of toxic air contaminants emissions from project operation:

- **Maximum Incremental Cancer Risk:** 10 in 1 million
- **Cancer Burden:** 0.5 excess cancer cases (in areas greater than or equal to 1 in 1 million)
- **Chronic and Acute Hazard Index:** 1.0 (project increment)

Construction Emissions

Construction of the proposed project would cause emissions from the construction equipment, worker commute, haul truck travel, and earthmoving activities. Construction emissions from the proposed project were estimated using methodologies described in detail in Chapter 1.4 of Appendix A.

The estimated maximum daily construction emissions are summarized in Table 4, and compared to the SCAQMD CEQA construction emissions significance thresholds. Daily construction emissions of NO\textsubscript{x}, CO, ROG, SO\textsubscript{2}, PM\textsubscript{10}, and PM\textsubscript{2.5} would be below the SCAQMD CEQA significance thresholds.

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG lb/day</th>
<th>NO\textsubscript{x} lb/day</th>
<th>CO lb/day</th>
<th>SO\textsubscript{2} lb/day</th>
<th>PM\textsubscript{10} lb/day</th>
<th>PM\textsubscript{2.5} lb/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>7.2</td>
<td>96.1</td>
<td>61.0</td>
<td>0.2</td>
<td>14.6</td>
<td>6.7</td>
</tr>
<tr>
<td>2017</td>
<td>9.0</td>
<td>85.7</td>
<td>58.5</td>
<td>0.2</td>
<td>10.4</td>
<td>5.3</td>
</tr>
<tr>
<td>2018</td>
<td>8.9</td>
<td>28.0</td>
<td>22.0</td>
<td>0.1</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Worst-case Emissions</td>
<td>9.0</td>
<td>96.0</td>
<td>60.3</td>
<td>0.2</td>
<td>14.5</td>
<td>6.7</td>
</tr>
<tr>
<td>SCAQMD Threshold</td>
<td>75</td>
<td>100</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
</tbody>
</table>

Exceed Thresholds? NO NO NO NO NO NO

Note: Emissions were modeled using CalEEMod.

A minimum construction period of 22 months, a minimum of 4 months to export the contaminated soil, and use of truck and trailers to export the contaminated soil would be the adhered to as an environmental commitment for the proposed project. In addition, the proposed project would be constructed in compliance with the applicable SCAQMD regulations and policies, such as Rule 1166, Rule 1403, and Rule 403, and would implement BMPs to reduce construction emissions. Therefore, emissions from proposed project construction would have a less than significant impact on air quality.

Operational Emissions

During proposed project operation, although the proposed project would utilize the latest technology and comply with the most stringent emission standards applicable to the selected equipment and the proposed operation, the proposed project would cause a net emission increase due to the overall increase in production rate on a daily and annual basis. Operational emissions include those from the onsite equipment, as well as vehicle trips made by the workers and haul trucks delivering raw material and HMA product.

Operational emissions were estimated using the methodology presented in Chapter 1.4 of Appendix A. Because the existing plant would be demolished in order to build the proposed project, net emission increases of the proposed project were calculated as the difference between the emissions of the proposed project and the existing plant. The emissions of the existing plant, the proposed project, and the net increase due to the proposed project are summarized in Table 5. The net emission increase of the proposed project were compared to the SCAQMD CEQA significance thresholds. As shown in the table, net increase from project-related emissions of air pollutants would be lower than the SCAQMD CEQA significance thresholds for operation.
Table 5. Daily Operational Emissions

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{x}</th>
<th>CO</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project - Onsite Equipment</td>
<td>ton/year</td>
<td>9.72</td>
<td>4.61</td>
<td>1.20</td>
<td>45.63</td>
<td>8.32</td>
</tr>
<tr>
<td>Proposed Project - Offsite Vehicle</td>
<td>ton/year</td>
<td>0.34</td>
<td>14.98</td>
<td>0.05</td>
<td>2.29</td>
<td>0.44</td>
</tr>
<tr>
<td>Existing Plant - Onsite Equipment</td>
<td>ton/year</td>
<td>3.89</td>
<td>3.47</td>
<td>0.23</td>
<td>21.14</td>
<td>3.60</td>
</tr>
<tr>
<td>Existing Plant - Offsite Vehicle</td>
<td>ton/year</td>
<td>0.52</td>
<td>13.20</td>
<td>0.02</td>
<td>2.46</td>
<td>0.43</td>
</tr>
<tr>
<td>Net Annual Emissions Increase</td>
<td>ton/year</td>
<td>5.66</td>
<td>2.91</td>
<td>0.99</td>
<td>24.33</td>
<td>4.73</td>
</tr>
<tr>
<td>Net Daily Emissions Increase</td>
<td>lb/day</td>
<td>31.01</td>
<td>15.94</td>
<td>5.42</td>
<td>133.31</td>
<td>25.94</td>
</tr>
<tr>
<td>SCAQMD Threshold</td>
<td>lb/day</td>
<td>55</td>
<td>55</td>
<td>150</td>
<td>550</td>
<td>150</td>
</tr>
<tr>
<td>Exceed threshold?</td>
<td>lb/day</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note:
Net increase refers to the difference between the proposed project and the exiting condition, because the existing plant would be demolished and associated emissions removed.

CO Hotspot

While SCAQMD’s emission thresholds are for the purposes of attainment of NAAQS and CAAQS on a regional level, CO is considered a localized problem under Section 9.4 of the SCAQMD CEQA Air Quality Analysis Guidance Handbook; thus, additional analysis is required when a project is likely to expose sensitive receptors to CO hotspots.

CO hot spots normally occur at locations where large numbers of vehicles idle, such as congested intersections. Based on the Traffic Impact Analysis performed for the proposed project (Appendix B), the additional vehicle trips needed to deliver raw material or ship the HMA product would not be expected to cause a deterioration of the LOS at nearby signalized intersections (CH2M, 2015). Therefore, the limited number of increased truck trips associated with the proposed project would not cause additional traffic congestions. The proposed project would not be anticipated to increase local CO concentrations to levels that would cause or contribute to new violations of the CO air quality standards.

Because both construction and operational emissions would be below the SCAQMD CEQA thresholds and the proposed project would not cause CO hotspots at intersections, the proposed project is not expected to violate any air quality standard or contribute substantially to an existing or projected air quality violation during operation. The project would have a less than significant impact to air quality.

c) **Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal of State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors?)**

Significance Threshold: A significant impact would occur if the proposed project’s incremental air quality effects are considerable when viewed in connection with the effects of past, present, and future projects.

According to the SCAQMD white paper, Potential Control Strategies to Address Cumulative Impacts from Air Pollution, Appendix D Cumulative Impact Analysis Requirements Pursuant to CEQA (SCAQMD, 2003), projects that do not exceed the SCAQMD CEQA significance thresholds are generally not considered to be cumulatively significant. The proposed project area is in nonattainment for ozone and PM\textsubscript{2.5} under NAAQS, and in nonattainment for ozone, PM\textsubscript{10}, and PM\textsubscript{2.5} under CAAQS. As shown in Tables 4 and 5, the emissions increase of non-attainment pollutants (PM\textsubscript{10}, PM\textsubscript{2.5}, and the ozone precursors [NO\textsubscript{x} and ROG]) due to the proposed project, would not exceed the CEQA thresholds of significance set by SCAQMD for construction and operation.
According to the SCAQMD white paper cited above, because the project-specific emissions increases would be less than the CEQA thresholds, the proposed project would not result in a cumulatively considerable contribution to a significant cumulative impact. The cumulative impact from proposed project construction and operation would be less than significant.

d) Would the project expose sensitive receptors to substantial pollutant concentrations?

Significance Threshold: A significant impact may occur if construction or operation of the proposed project generated pollutant concentrations to a degree that would significantly affect sensitive receptors. Sensitive receptors include residences, board and care facilities, schools, playgrounds, hospitals, parks, child care centers, and outdoor athletic facilities.

The construction site is approximately 2.9 acres in size, and is bounded by industrial land use. The nearest residential area is approximately 1,500 feet from the proposed project site. Because of the relatively small size of the construction site and the distance between the proposed project site and the closest sensitive receptor, air pollutants emitted during project construction and operation would be greatly diluted by the time they reach any sensitive receptors. In addition, as discussed in previous sections, proposed project construction emissions would be temporary and below CEQA thresholds, and therefore would not expose nearby receptors to substantial criteria pollutant concentrations. Proposed project operation emissions would also be below CEQA thresholds, indicating the proposed project emissions would not result in cause significant concentration increases. Therefore, proposed project construction and operation emissions would not expose sensitive receptors to substantial pollutant concentrations.

The proposed project construction and operation would also have the potential to emit TACs. TAC emissions from construction would be short term in nature, and long-term exposures to carcinogenic air toxics such as diesel particulate matter would not occur. In addition, BMPS would be implemented during proposed project construction, such as minimizing idling times and maintaining equipment in good condition. These measures would also reduce air toxic emissions and minimize the exposure of nearby receptors to the construction-related pollutants. Therefore, the proposed project would not expose sensitive receptors to substantial pollutant concentrations during construction.

During proposed project operation, predominant TAC emissions from the plant would be mostly emitted from the drum dryer. Small quantities of TACs emissions may also be emitted from the stack of the blue smoke control device serving the asphalt silo and truck loadout, and the oiler heater. The aggregate and RAP processing equipment would not emit TACs. Both the drum dryer and the oil heater would use natural gas fuel, a cleaner burning fuel medium. Operation of the asphalt plant would be subject to SCAQMD permitting requirements and the new source review rules. TAC emissions from the equipment would be subject to SCAQMD’s Rule 1401 requirements for new or modified stationary sources. Rule 1401 requires that no project be approved unless the predicted health risks would be below 10 in one million for incremental cancer risk, and the chronic and acute hazard indexes would be below 1.0. The proposed project would comply with applicable SCAQMD rule including Rule 1401 for TACs, and would have health risks below the Rule 1401 thresholds at the maximally impacted worker and residents. Considering the distance between the plant and the sensitive receptors, the health risks of the plant TAC emissions would be expected to be lower than the SCAQMD CEQA significance thresholds. Therefore, the plant equipment operation would not expose sensitive receptors to substantial pollutant concentrations at any sensitive receptor locations.

TAC emissions would also be expected from the haul trucks that would be used to deliver the raw materials to the plant and to ship the HMA products from the plant. The main TAC of concern from the vehicle emissions in the SCAB is DPM. Efforts for reducing DPM emissions have been taken at federal, state, and local levels. EPA's Control of Hazardous Air Pollutants from Mobile Sources (Federal Register, Vol. 72, No. 37, page 8430, February
26, 2007) requires controls that would dramatically decrease mobile source air toxic emissions through cleaner fuels and cleaner engines. At state and local levels, the ARB DPM Risk Reduction Plan and the various ATCMs implemented in recent years expect to reduce DPM emissions and the associated health risks by 85 percent or more by 2020 in California (ARB, 2000). In SCAQMD, Rule 1196 requires public heavy duty vehicle fleets to acquire alternative-fuel vehicles when procuring or leasing such vehicles, which would aid in the reduction of air toxic and criteria pollutant emissions. With implementation of these regulatory requirements to reduce emissions of air toxics, especially DPM, cancer risks due to DPM in the region are expected to decrease in future years regardless of the regional VMT growth and increase, with or without the proposed project.

The number of vehicle trips would increase from the 2015 existing level when the proposed project begins operation in 2018, due to the increased production rate of the new plant. However, the project would incorporate emission reduction strategies to minimize the air quality and health risk impacts from the proposed project. The proposed project would not expose sensitive receptors to significant amount of TAC emissions, especially DPM emissions, for the following reasons:

- The project would increase the percentage of trucks for RAP and product delivery fueled by CNG from the existing level of 20 percent to the proposed level of 90 percent. As a result, the majority of the haul trucks travel in and out of the new plant would be CNG-fueled. The number of diesel fueled trucks operating for the new plant remains similar to the existing condition. Therefore, the proposed project would not substantially increase TAC, especially DPM emissions from proposed project operation, even with increased vehicle trips.

- For raw material delivery, the proposed project would increase the percentage of RAP used in the HMA from approximately 7.5 to 50 percent. RAP materials are typically readily available locally while aggregates require hauling from a quarry that is usually located much farther away from the plant. Therefore, increasing the RAP usage in HMA would decrease the haul truck trip distance needed to deliver the material and consequently reduce the vehicle TAC emissions and the related health risks.

As discussed above, the proposed project would not be expected to have a substantial emission increase of TACs associated with the plant equipment operation or vehicle travel. Therefore, the proposed project would not expose sensitive receptors to substantial pollutant concentrations during construction and operation.

e) Would the project create objectionable odors affecting a substantial number of people?

Significance Threshold: A significant impact would occur if the project created objectionable odors during construction or operation that would affect a substantial number of people.

The use of diesel construction equipment during the proposed project construction may generate minor odors near the equipment. Construction emissions would be temporary. In addition, because there are no residential areas adjacent to the proposed project construction site, construction emissions are not expected to create objectionable odors affecting a substantial number of people.

Excavation of the soil at the proposed project may cause odorous emissions from VOC contaminated soil. Excavation would follow SCAQMD Rule 1166 monitoring and mitigation requirements to minimize VOC and odorous emissions from the excavation. As detailed in Section VIII Hazards and Hazardous Materials, contaminated soil would be stored in sealed containers and stockpiles would be covered. Any VOC contaminated soil would be removed from the proposed project site within 30 days. Therefore, odorous emissions would be well controlled and would not be expected to affect a large number of people.
According to the SCAQMD CEQA Air Quality Analysis Guidance Handbook, odor nuisances are associated with land uses and industrial operations, including agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting, refineries, landfills, dairies, and fiberglass-molding facilities (SCAQMD, 1993). The proposed project would not fall into any of these categories. Operation of the proposed project would result in fugitive dust and combustion emissions from the drum dryer, which would not include odorous compounds at the low concentrations expected. Evaporative ROG emissions from the HMA storage silo and truck loadout would be controlled by a blue smoke control device to minimize pollutant emissions, as required by SCAQMD. The odor emissions, if any, would be unlikely to cause a nuisance to the residential areas that are located more than 1,500 feet away.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal of State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors?)</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures
No mitigation is necessary.
IV. Biological Resources

Environmental Setting

The proposed project would be constructed on approximately 1.9 acres of land that is the site of the existing Asphalt Plant No. 1. The proposed project would also continue to utilize the 1-acre leased property to the south. The parcels where the proposed project would be constructed are surrounded by heavy industrial land uses, where properties are also highly disturbed and primarily paved. The only vegetation present on the proposed project site is a limited stand of ornamental trees located around the administration building at the north side of the property.

Wildlife known to occur in the vicinity includes the California ground squirrel, opossum, raccoon, western fence lizard, house sparrow, European starling, and rock dove, all common species in the area that are not state or federally listed. While a search of the California Natural Diversity Database (California Department of Fish and Wildlife, 2015) within a 1-mile radius of the proposed project site identified the potential for southwestern willow flycatcher, a state- and federally endangered species, to occur in the vicinity, no suitable habitat for this species is located on or near the proposed project site. A search of the U.S. Fish and Wildlife Information for Planning and Conservation website (U.S. Fish and Wildlife Service, 2015) identified no designated or proposed critical habitat within 1 mile of the proposed project site. There is no native habitat for plants or animals located on the proposed project site, and the site lacks the minimum characteristics and conditions necessary to support any sensitive or protected plant or animal species that occur in the region.

Adjacent to the proposed project site to the east is a series of Amtrak railroad tracks, and beyond the tracks to the east (approximately 325 feet from the existing asphalt plant property) is the Los Angeles River. This portion of the Los Angeles River that is contained within a concrete trapezoidal channel is identified as “open space” in the Central City North Community Plan (City of Los Angeles, 2000). And while it is included in the Los Angeles River Revitalization Plan (City of Los Angeles, 2012) as part of the Los Angeles River Corridor, no habitat restoration for this segment of the river is proposed as part of the Plan. Although the Los Angeles River has year-round flows (primarily resulting from urban runoff and treated wastewater), there is no state or federally-designated critical habitat in this portion of the Los Angeles River, and it does not support any state or federally-listed or proposed threatened or endangered species.

Impact Assessment

a) Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

Significance Threshold: A significant impact may occur if the proposed project would remove or modify habitat for any species identified or designated as a candidate, sensitive, or special status species in local or regional plans, policies, or regulation, or by the state or federal regulatory agencies cited.

The proposed project site is almost completely paved, with only a few ornamental trees comprising vegetation on the site, therefore there is no suitable habitat for candidate, sensitive, or special status species on the proposed project site. In addition, no designated or proposed critical habitat was identified on the proposed project site, or within a 1-mile radius (U.S. Fish and Wildlife Service, 2015).

Because neither protected species nor their habitat would be adversely affected by construction or operation of the proposed project, no impact would occur.
b) Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or US Fish and Wildlife Service?

Significance Threshold: See IV (a) above.

The Los Angeles River is located approximately 325 feet to the east of the proposed project site, however, this segment of the river is contained within a concrete trapezoidal channel, and there is no riparian vegetation within or adjacent to the channel. While the river is designated as “open space” in the Central City North Community Plan (City of Los Angeles, 2000), because of the paved channel, there are no sensitive natural communities present in this part of the river. Surface water runoff from the proposed project site drains west towards S. Santa Fe Avenue, and the proposed project design will include LID design standards, such as swales along the site perimeter along with drywells, that are designed to minimize the potential for pollutants to leave the proposed project site. During construction, an SWPPP including BMPs to control stormwater pollution would be implemented. As a result, there would be no adverse effect on riparian habitat or other sensitive natural communities as a result of construction or operation of the proposed project, and no impact would occur.

c) Would the project have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Significance Threshold: A significant impact may occur if federally protected wetlands, as defined by Section 404 of the Clean Water Act, would be modified or removed.

There are no federally protected wetlands, as defined by Section 404 of the Clean Water Act, present on the proposed project site, therefore there would be no adverse effect on these resources as a result of construction or operation of the proposed project and no impact would occur.

d) Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Significance Threshold: A significant impact may occur if the proposed project interfered or removed access to a migratory wildlife corridor or impeded the use of native wildlife nursery sites.

The nearest wildlife corridor to the proposed project site is the Los Angeles River, which is designated as a riparian linkage in the Greater Los Angeles County Open Space for Habitat and Recreation Plan (part of the Greater Los Angeles County Integrated Regional Water Management Plan) (County of Los Angeles, 2012). As discussed under Section IV (b) above, the Los Angeles River would not be adversely affected by construction or operation of the proposed project.

The Migratory Bird Treaty Act protects several species of birds, including their active nests. Although no federally listed species have the potential to occur on a regular basis nor are likely to breed on the proposed project site, to avoid the potential to disturb nesting birds, removal of the ornamental trees on the proposed project site would be completed outside of the nesting season (February 1 – September 15). If tree removal must occur during the nesting season, a qualified biologist would conduct preconstruction nesting bird surveys within 5-7 days prior to removal. In addition, the proposed project design includes landscaping around the perimeter of the proposed project site, which could provide limited habitat for migratory birds.
There are no native wildlife nursery sites in the vicinity of the proposed project site, therefore no nursery sites would be adversely affected by the proposed project. Because the construction and operation of the proposed project would not interfere substantially with the movement of native resident or migratory fish or wildlife species, or with established native resident or migratory wildlife corridors, there would be no impact as a result of the proposed project.

e) Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Significance Threshold: A significant impact may occur if the proposed project would cause an impact that was inconsistent with local regulations pertaining to biological resources.

The City of Los Angeles Municipal Code includes a Protected Tree Relocation and Replacement ordinance (Section 1. Subdivision 12 of Subsection A of Section 12.21), which protects a number of Southern California native tree species. Because the only trees present on the proposed project site are ornamental trees (Fern Pine, *Podocarpus gracilior*), they are not protected by this ordinance, and their removal as part of the proposed project would not conflict with any local policies or ordinances.

The *City of Los Angeles General Plan Open Space Element* (City of Los Angeles, 1973) includes policies that regulate activities that affect areas designated as open space. Although the Los Angeles River in the vicinity of the proposed project site is designated as open space, as discussed in Section IV (b) above there would be no impacts on the Los Angeles River during construction or operation of the proposed project, therefore, the proposed project would not conflict with local policies regarding open space.

Because the proposed project would not conflict with local policies or ordinances protecting biological resources during construction or operation of the proposed project, such as a tree preservation policy or ordinance, no impact would occur.

f) Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Significance Threshold: A significant impact may occur if the proposed project would be inconsistent with the provisions of the adopted habitat conservation plans of the cited type.

Within the City and County of Los Angeles, there are a number of plans focused on habitat restoration and conservation. These include the *Los Angeles River Revitalization Master Plan* (City of Los Angeles, 2012a), the *Greater Los Angeles County Open Space for Habitat and Recreation Plan* (County of Los Angeles, 2012c) (part of the *Greater Los Angeles County Integrated Regional Water Management Plan*), and the *City of Los Angeles General Plan Open Space Element* (City of Los Angeles, 1973). Though these plans identify the Los Angeles River corridor as open space, none include specific conservation or restoration plans for the concrete-lined portion of the Los Angeles River that is located to the east of the proposed project site. In addition, as discussed in Section IV (b) above, there would be no impacts on the Los Angeles River during construction or operation of the proposed project, therefore no impact would occur.
In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modification, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations or by the California Department of Fish and Game or the US Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as tree preservation policy or ordinance?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or State habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
V. Cultural Resources

Environmental Setting

The proposed project site is highly developed and disturbed. It has been entirely developed, and there are no natural soils on the surface of the site or natural vegetation. The Asphalt Plant No. 1 property consists of an asphalt recycling and production plant with ancillary buildings and hardstand areas. There are covered aggregate storage bins, RAP storage bins, above ground and subterranean conveyor systems, asphalt processing equipment, a gas and oil building, fuel dispenser, a single story administration building, and single story maintenance building. The property directly to the south of the plant is leased by the City for parking and equipment storage associated with the existing plant consists entirely of an asphalt-concrete paved surface.

A California Historical Resources Information System search was conducted on May 12, 2015 at the South Central Coast Information Center in Fullerton, California. The search revealed 22 previous cultural resource studies had been carried out within half a mile of the site. Of those studies, two had been conducted within or adjacent to the proposed project site. There are two previously recorded resources associated with the existing plant: the administration building (Site No. P-19-180829) and the location of the remnants of the former Asphaltum & Oil Refining Company (Site No. P-19-003777). The E. Olympic Boulevard bridge to the north of the proposed project site is a historic-era bridge. No archaeological resources were previously recorded within the proposed project site.

The plant and its ancillary buildings are old enough to be evaluated for inclusion in the California Register of Historic Resources (CRHR). Construction of the buildings associated with the plant commenced in October of 1946 at this location. The original plant was constructed at another location in 1915. Some equipment was moved to the new location and a new facility was constructed around it in 1946. The buildings are all constructed of reinforced cinder block except the administration building, which is reinforced brick. The buildings appear to be mostly intact. A review of historic maps and photographs reveals episodes of modernization and upgrades. In 1989, the plant was retrofitted to recycle asphalt pavement or RAP.

On May 2, 2015, a field reconnaissance was conducted of the plant. As a result, all historic-age features of the existing Asphalt Plant No. 1 were recorded on an updated DPR form and the plant was evaluated for its potential for listing on the CRHR. The study concluded that the plant is not significant for its association with development of Los Angeles or transportation infrastructure in Los Angeles County in general (Criteria A). The period of significance for municipal road construction and improvement begins circa 1910 and ended with World War II. Although the plant contributed to development of Los Angeles and transportation infrastructure in the County at its first location, asphalt produced from the existing plant was used for maintenance of existing roads and one off-road construction project. During the years of operation of the plant, the focus has been on the freeway system, which was financed and constructed at the state and federal levels (Roth, 2007). The plant is not associated with any persons of historic significance (Criteria B). Concrete block construction has been commonly used in California. With its small scale and lack of ornamentation, it also is not significant for its architecture or engineering design (Criteria C). It is unlikely to yield important information about construction materials or technology (Criteria D). The plant is therefore ineligible for listing on the CRHR and is not considered a historical resource for the purpose of compliance with CEQA. The Cultural Resources Analysis report is provided in Appendix C.

The Cultural Resources Analysis report also concluded that the proposed project site has a very low sensitivity for buried intact archaeological resources given decades of disturbance and use. Prior geotechnical studies revealed fill in some areas up to 12 feet below ground surface. However, as with any project that disturbs the ground, there remains the potential for unanticipated discovery of buried cultural resources. As detailed in the following sections, an unexpected discovery of cultural resources during any phase of the proposed project...
would result in a work stoppage in the vicinity of the find until the resources can be evaluated by the professional archaeologist.

Impact Assessment

a) *Would the project cause a substantial adverse change in the significance of a historical resource as defined in Sec 15064.5?*

Significance Threshold: A significant impact may result if the proposed project caused a substantial adverse change to the significance of a historical resource.

All elements of the plant over 50 years old were recorded and evaluated for significance. Although the buildings and structures presently meet the 50 year age threshold to warrant analysis, they do not represent unique resources. None of the buildings and structures associated with the plant meet any of the criteria for eligibility for listing on either the NRHP or CRHR. Therefore, no historical resources for the purposes of CEQA were identified at the proposed project site. The E. Olympic Boulevard bridge is located to the north of the proposed project site would not be impacted by the proposed project. The proposed project would have no impact on the significance of a historical resource during construction or operation.

b) *Would the project cause a substantial adverse change in the significance of a historical resource as defined in Sec 15064.5?*

Significance Threshold: A significant impact may occur if the proposed project were to cause a substantial adverse change in the significance of an archaeological resource, which falls under the CEQA Guidelines section cited above.

No archaeological resources were identified at the proposed project site and sensitivity is very low due to decades of disturbance and deep fill deposits. Therefore, it is not anticipated that archaeological resources would be encountered during excavation and grading for the proposed project.

In the unlikely event that archaeological resources are inadvertently discovered during project construction, the following BMPs would be adopted by the City to ensure that any potential impacts remain at a less than significant level. The contractor would cease all construction activities in accordance with Section 6-3.2 of the *Standard Specifications for Public Works Construction* (Greenbook). Section 6-3.2 requires that grading, excavation, or other ground disturbing activities for a public project be halted in the area of a paleontological or archaeological find, until such time as a resource expert can review the find, determine its significance, and if required, determine appropriate mitigation measures.

With implementation of the BMPs identified above, potential impacts to archaeological resources during construction of the proposed project would be less than significant. No impact is anticipated from operation of the proposed project.

c) *Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?*

Significance Threshold: A significant impact may occur if grading or excavation activities associated with the proposed project would disturb unique paleontological resources or unique geologic features.

No paleontological resources were identified at the proposed project site and therefore, no impacts are anticipated. As detailed above in Section V(b) of this IS, the City has identified BMPs that would be followed in the event that paleontological resources are inadvertently discovered during project construction. With the
implementation of these BMPs, potential impacts to archaeological resources during construction of the proposed project would be less than significant. No impact is anticipated from operation of the proposed project.

d) Would the project disturb any human remains, including those interred outside of formal cemeteries?

Significance Threshold: A significant impact may occur if grading or excavation activities associated with the proposed project would disturb interred human remains.

No known burial sites are located within the proposed project site. The proposed project site has been previously disturbed and filled in some areas up to 12 feet below ground surface, therefore, it is not likely that human remains would exist in the subsurface and be discovered during proposed project construction.

The City has identified BMPs that would be implemented in the unlikely event that human remains are inadvertently discovered during project construction. If human remains are discovered, the contractor would cease all construction activities in accordance with Section 6-3.2 of the Standard Specifications for Public Works Construction. California Health and Safety Code Section 7050.5 states that no further disturbance shall occur until the County Coroner has made a determination of origin and disposition pursuant to Public Resources Code Section 5097.98. The County Coroner must be notified of the find immediately. If the remains are determined to be Native American, the County Coroner will notify the Native American Heritage Commission (NAHC), which will determine and notify a Most Likely Descendant (MLD). The MLD may inspect the site of the discovery with the permission of the landowner, or an authorized representative. The MLD shall complete its inspection within 48 hours of its notification by the NAHC. The MLD may recommend scientific removal and analysis of human remains and items associated with Native American burials.

With implementation of the BMPs identified above, construction of the proposed project would not disturb interred human remains and the impact would be less than significant. No impact is anticipated from operation of the proposed project.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in Sec 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of a historical resource as defined in Sec 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
d) Disturb any human remains, including those interred outside of formal cemeteries?

Mitigation Measures
No mitigation is required.
VI. Geology and Soils

Environmental Setting
A geotechnical investigation of the proposed project site was conducted in 2008 and a report documenting the findings of the investigation was prepared by the City’s Department of Public Works, Bureau of Engineering, Geotechnical Engineering Group (GEO) on October 3, 2008. This report was reviewed by the GEO in 2015 and a supplemental report was prepared on April 14, 2015 which concluded that the site conditions had not changed and updated some of the recommendations relating to design and construction of the proposed project. The information presented in this section is summarized from these reports and the report prepared by GEO in 2015 is provided in Appendix D.

Ground surface rupturing along faults, ground shaking and liquefaction are three of the important geological considerations for properties in Southern California. The 2008 geotechnical investigation determined that the proposed project site is not located within an Alquist-Priolo Earthquake Fault Zone and, therefore, concluded that the potential for ground surface rupture impacting the proposed project site was low. The closest fault to the proposed project site is the Puente Hills Blind Thrust Fault and surface projections of the potential rupture area are located at distances of approximately 0.4 mile (GEO, 2008). The investigation also found that the proposed project site is not located within an area that has potential for liquefaction (where near surface saturated, clean, fine-grained loose sands are subject to intense ground shaking) or a landslide. Furthermore, the proposed project site is not identified as susceptible to liquefaction or landslide prone on the Areas Susceptible to Liquefaction map (Exhibit B) or the Landslide Inventory and Hillside Areas map (Exhibit C) of the Safety Element of the Los Angeles City General Plan. The topography of the proposed project site and the surrounding area is relatively flat.

Ground shaking resulting from an earthquake occurring along any of several major active and potentially active faults in Southern California has the highest probability of affecting the proposed project site (GEO, 2008). Known regional faults that could produce significant ground shaking at the proposed project site include the Puente Hills Blind Thrust, Upper Elysian Park Blind Thrust, Hollywood, Newport-Inglewood, Raymond, Verdugo and Santa Monica Faults, among others (GEO, 2008).

Subsidence is characterized as a sinking of the ground surface relative to surrounding areas, and can generally occur where deep soil deposits are present. Subsidence can also occur as a result of oil and gas extraction, and mining activities. The City and County of Los Angeles do not have maps showing areas of subsidence. However, Exhibit A of the City of Los Angeles General Plan Conservation Element and Exhibit E of the Safety Element of the City of Los Angeles General Plan identifies areas of oil and gas extraction within the City which could potentially be susceptible to subsidence associated with these activities. The Safety Element of the Los Angeles City General Plan (1996) includes information regarding the City’s program to preclude potential subsidence associated with oil and gas extraction activities within the City. Subsurface extraction activities within the City of Los Angeles are regulated by the Oil Drilling District’s procedures, which contain provisions for monitoring and imposing measures to preclude subsidence related to oil and gas extraction. The proposed project site is not located in or adjacent to an oil and gas extraction area and therefore, the potential for subsidence in the area surrounding the site is relatively low (Parsons Brinkerhoff, 2014).

Impact Assessment

a) Would the project expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

 a1) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?
Significance Threshold: A significant impact may occur if the proposed project were located within a state-designated Alquist-Priolo Zone or other designated fault zone and appropriate building practices were not followed.

The proposed project site is not located within an Alquist-Priolo Earthquake Fault Zone. Therefore construction and operation of the proposed project would not expose people or structures to potential adverse effects from ground surface rupture and no impact is anticipated. The closest fault to the proposed project site is the Puente Hills Blind Thrust Fault and surface projections of the potential rupture area are located at distances of approximately 0.4 mile (GEO, 2008).

aii) Strong seismic ground shaking?

Significance Threshold: A significant impact may occur if the proposed project design did not comply with building code requirements intended to protect people from hazards associated with strong seismic ground shaking.

Ground shaking resulting from an earthquake occurring along any of several major active and potentially active faults in Southern California has the highest probability of affecting the proposed project site (GEO, 2008).

Based on information collected from geotechnical borings onsite and a probabilistic seismic hazard analysis, seismic design parameters for the proposed project were developed in accordance with the 2010 California Building Code (CBC), as amended by the City and County of Los Angeles (the CBC is based on the International Building Code). Consistent with the CBC and the City’s internal Building and Safety Department approval, the proposed project design would incorporate steel piles, in areas deemed necessary, driven into the ground and connected to a reinforced concrete basemat building foundation. Based on the final design for the plant, additional field investigation and testing may be required to provide geotechnical data necessary to finalize the design details such as the number, location and depth of the steel piles. The fixed site equipment would be manufactured with plates and connectors which would be anchored to the basemat.

Plant employees are trained in emergency procedures associated with earthquakes.

The seismic design features of the proposed project and emergency procedures and training would minimize the potential for people or structures to be adversely impacted from seismic ground shaking in the event of an earthquake. The impact would be less than significant.

aiii) Seismic-related ground failure, including liquefaction?

Significance Threshold: A significant impact may occur if the proposed project would be located in an area identified as having a high risk of liquefaction and appropriate design measures required within such designated areas were not incorporated into the project.

The proposed project site is not located within an area that is susceptible to liquefaction. Therefore, the proposed project would not expose people or structures to hazards and risks associated with liquefaction and no impact would occur.

aiv) Landslides?

Significance Threshold: A significant impact may occur if the proposed project would be located in an area identified as having a high risk of landslides and appropriate design measures required within such designated areas were not incorporated into the project.
The proposed project site and surrounding area is relatively flat and is not located within an area that has potential for landslides, including seismically-induced landslides. Therefore, the proposed project would not expose people or structures to hazards and risks associated with landslides and no impact would occur.

b) Would the project result in substantial soil erosion or the loss of topsoil?

Significance Threshold: A significant impact may occur if the proposed project were to expose large areas to the erosion effects of wind or water for a prolonged period of time.

Construction of the proposed project would involve ground-disturbing activities, such as excavation, trenching, and grading. These activities could result in erosion at the proposed project site during construction, though soil exposure would be temporary and short-term in nature. In accordance with standard specifications for public works construction and building code requirements, a SWPPP incorporating water and wind erosion and sedimentation BMPs would be prepared and implemented during construction in order to prevent the proposed project from inducing substantial soil erosion. As detailed in Section VIII, Hazards and Hazardous Materials, the proposed project site contains contaminated soil and additional management measures would be implemented to prevent wind and water erosion from stockpiles of contaminated soil.

After construction is completed, the proposed project site would be covered by buildings and pavement. A small proportion of the site would consist of landscaping (above-ground tree boxes) and perimeter swales. No areas of exposed soil would exist that would be exposed to the effects of erosion by wind or water.

Construction and operation of the proposed project would have less than significant impacts related to erosion.

c) Would the project be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Significance Threshold: A significant impact may occur if the proposed project was built in an unstable area without proper site preparation or design features to provide adequate foundations for project buildings, thus posing a hazard to life and property.

As discussed above, the proposed project site is located within an area that has no potential for liquefaction, landslide or subsidence. The geotechnical investigation conducted at the proposed project site determined that, based on materials encountered in the soil borings and considering the depth of historic and current groundwater levels (150 feet below the ground surface), the potential for lateral spreading of earth materials during an earthquake at the site is very low (GEO, 2008).

The geotechnical investigation conducted at the proposed project site found that onsite soils that are not contaminated are suitable for re-use as compacted fill. However, if soft, yielding or unsuitable soils are exposed during excavation the unsuitable soils would be removed. Material would need to be imported and used to fill areas of the site where contaminated materials are excavated and to raise the center of the site by approximately 3 feet. All material which is imported and used to fill the site would consist of clean, non-expansive material that conforms with the “Greenbook” Standard Specifications for Public Works Construction (2015) for structure backfill. The fill materials would be compacted and graded to create a stable surface upon which to construct the plant buildings and equipment.

The existing tunnel/bunker at the proposed project site would be abandoned in place and filled with slurry to seal the tunnel. The use of slurry instead of traditional soil compaction would create adequate support for the tunnel and reduce the risk of tunnel collapse. To further reduce the risk of tunnel collapse, the proposed project...
has been designed to avoid placing plant equipment in locations where proposed foundations would have to be placed directly over the filled tunnel.

Construction and operation of the proposed project would have a less than significant impact related to occurrence on a geologic unit or soil that is anticipated to be unstable, or having the potential to result in an on-or offsite landslide, lateral spreading, subsidence or collapse.

d) Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

Significance Threshold: A significant impact may occur if the proposed project were built on expansive soils without proper site preparation or design features to provide adequate foundations for project buildings, thus posing a risk to life and property.

Soils high in organic matter expand when they become moist and shrink when they dry out. The change in soil volume can damage building foundations. The proposed project site is underlain by sand with gravel and there are no known expansive soils present at the site and therefore no impact would occur.

e) Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

Significance Threshold: A significant impact may occur if the proposed project were built on soils that were incapable of adequately supporting the use of septic tanks or alternative wastewater disposal system, and such a system were proposed.

Septic tanks and alternative wastewater disposal systems are not part of the proposed project design. Therefore, no impact associated with construction and operation of the proposed project would occur.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>(ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

TR1109151013SCO 45 DECEMBER 2015
(iii) Seismic-related ground failure, including liquefaction? □ □ □ ☒

(iv) Landslides? □ □ □ ☒

b) Result in substantial soil erosion or the loss of topsoil? □ □ ☒ □

c) Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse? □ □ ☒ □

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property? □ □ □ ☒

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water? □ □ □ ☒

Mitigation Measures
No mitigation is necessary.
VII. Greenhouse Gas Emissions

Greenhouse gases (GHGs) include naturally occurring and anthropogenic gases, such as carbon dioxide (CO2), methane, nitrous oxide, hydro-chlorofluorocarbons, perfluorocarbons, and sulfur hexafluoride. GHGs absorb infrared radiation, trap the energy from the sun, and help maintain the temperature of the Earth’s surface, creating a process known as the greenhouse effect. The accumulation of GHGs in the atmosphere influences the long-term range of average atmospheric temperatures. Scientific evidence indicates a trend of increasing global temperature over the past century due to an increase in GHG emissions from human activities. The climate change associated with this global warming is predicted to produce economic and social consequences across the globe.

The analysis of GHG impacts consists of a summary of the regulatory framework to be considered in the decision-making process, a description of the existing conditions, thresholds for determining if the proposed ordinances would result in significant impacts, and anticipated impacts (direct, indirect, and cumulative). The potential for impacts to GHG emissions has been analyzed in accordance with Appendix G of the State CEQA Guidelines.

The following sections provide a summary of the environmental setting and the impact analysis related to GHG and climate change. Detailed analysis are presented in Appendix A: Air Quality and Greenhouse Gas Impacts Analysis Technical Report.

Environmental Setting

Regulatory Setting

Federal Regulations

Climate change and its associated effects are being addressed through various efforts at the federal level to improve fuel economy and energy efficiency. EPA and the National Highway Traffic Safety Administration are taking coordinated steps to enable the production of a new generation of clean vehicles— from the smallest cars to the largest trucks—through reduced greenhouse gas emissions and improved fuel use. Together, the enacted and proposed standards are expected to save more than 6 billion barrels of oil through 2025 and reduce more than 3,100 million metric tons of carbon dioxide emissions.

EPA is also responsible for developing and implementing regulations to ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel. By 2022, the Renewable Fuel Standard program will reduce greenhouse gas emissions by 138 million metric tons, about the annual emissions of 27 million passenger vehicles, replacing about seven percent of expected annual diesel consumption and decreasing oil imports by $41.5 billion. (EPA, 2015). On August 3, 2015, the EPA issued the Clean Power Plan, which put the nation on track to cut harmful pollution from the power sector by 32 percent below 2005 levels, while also cutting smog-and soot-forming emissions that threaten public health by 20 percent (EPA, 2015).

Other GHG-related federal regulations include the Mandatory Greenhouse Gas Reporting Rule that requires facilities emit 25,000 metric tons per year or more of carbon dioxide equivalent (CO2e) emissions to report emissions to EPA, and the revised GHG Tailoring Rule that requires implementation of best available control measures (BACT) for sources under the Prevention of Significant Deterioration and Title V Operating Permit programs, and increase GHG emissions by 75,000 tons per year.

State Regulations

With the passage of several pieces of legislation including State Senate and Assembly Bills (ABs) and Executive Orders (EOs), California launched an innovative and proactive approach to address GHG emissions and potential climate change-related impacts:
• EO S-3-05 (June 1, 2005): The goal of this EO is to reduce California’s GHG emissions to year 2000 levels by 2010, year 1990 levels by the 2020, and 80 percent below year 1990 levels by 2050. In 2006, this goal was further reinforced with the passage of AB 32.

• AB 32, The Global Warming Solutions Act of 2006: AB 32 sets the same overall GHG emissions reduction goals as outlined in EO S-3-05, while further mandating that ARB create a scoping plan and implement rules to achieve “real, quantifiable, cost-effective reductions of greenhouse gases.” In December 2008, the ARB approved the initial Scoping Plan, which included a suite of measures to sharply cut GHG emissions. Key elements of the initial Scoping Plan included the following:
 - Expand and strengthen energy efficiency programs, including building and appliance standards.
 - Increase electricity generation from renewable resources to at least 33 percent of the statewide electricity mix by 2020.
 - Establish targets for passenger vehicle-related GHG emissions for regions throughout California and pursue policies and incentives to achieve those targets. Included with this strategy is support for the development and implementation of a high speed rail system to expand mobility choices and reduce GHG emissions.
 - Adopt and implement measures pursuant to existing State laws and policies, including California’s clean car standards and the Low Carbon Fuel Standard.
 - Develop a cap-and-trade program to ensure the target is met, while providing flexibility to California businesses to reduce emissions at low cost.

• In May 2014, ARB approved the first update to the Climate Change Scoping Plan (First Update) (ARB, 2014a). The First Update identifies opportunities to leverage existing and new funds to further drive GHG emission reductions through strategic planning and targeted low carbon investments. The First Update highlights California’s progress toward meeting the “near-term” 2020 GHG emission reduction goals defined in the initial Scoping Plan. It also evaluates how to align the State’s "longer-term" GHG reduction strategies with other State policy priorities for water, waste, natural resources, clean energy, transportation, and land use.

• Senate Bill 97, Chapter 185, 2007, Greenhouse Gas Emissions: Senate Bill 97 required the Governor’s Office of Planning and Research to develop recommended amendments to the CEQA Guidelines for addressing GHG emissions. The amendments became effective March 18, 2010.

• Renewables Portfolio Standard (RPS): Established in 2002 under SB 1078, accelerated in 2006 under Senate Bill 107, and expanded in 2011 under Senate Bill 2, California's RPS is one of the most ambitious renewable energy standards in the country. The RPS program requires investor-owned utilities, electric service providers, and community choice aggregators to increase procurement from eligible renewable energy resources to 33 percent of total procurement by 2020.

• California EO B-30-15, 2015. California EO B-30-15, which was signed by Governor Brown in April 2015, calls for a California GHG reduction target of 40 percent below 1990 levels by 2030. This is the most aggressive GHG emissions reduction goal in North America.

SCAQMD Climate Actions

SCAQMD has promoted a number of programs to combat climate change. SCAQMD’s first formal action to fight GHG occurred in 1991, with the issuance of its Policy on Global Warming and Stratospheric Ozone Depletion, targeting a transition away from CFCs as an industrial refrigerant and propellant in aerosol cans. In the early 1990s, SCAQMD adopted several regulations regarding ozone-depleting compounds, which served as models for state and federal agencies.
On September 5, 2008, the SCAQMD Governing Board approved the SCAQMD Climate Change Policy, which directs SCAQMD to assist the state, cities, local governments, businesses, and residents in areas related to reducing emissions that contribute to global warming.

On September 11, 2011, SCAQMD adopted an air quality-related energy policy to help guide a unified approach to reducing air pollution while addressing other key environmental concerns, including environmental justice, climate change, and energy independence. The policy integrates air quality, energy, and climate change issues in a coordinated and consolidated manner, outlines 10 policies and 10 action steps to help meet federal health-based standards for air quality in the South Coast Air Basin while promoting the development of zero- and near-zero emission technologies (SCAQMD, 2011).

Local Climate Actions

The City released its climate action plan, Green LA: An Action Plan to Lead the Nation in Fighting Global Warming, in May 2007 (City of Los Angles, 2007a), setting forth a goal of reducing the City’s greenhouse gas emissions to 35 percent below 1990 levels by the year 2030, establishing one of the most aggressive goals of any big city in the U.S. This climate action plan includes more than 50 actions to reduce GHG emissions, as well as measures to adapt to the effects of climate change.

Climate LA (City of Los Angeles, 2008) is the implementation program that provides detailed information about each action item discussed in the Green LA framework. Action items range from harnessing wind power for electricity production and energy efficiency retrofits in City buildings, to converting the City’s fleet vehicles to cleaner and more efficient models, and reducing water consumption.

Existing Conditions

In the U.S., the main source of GHG emissions is electricity generation, followed by transportation. In California, however, transportation sources (passenger cars, light-duty trucks, other trucks, buses, and motorcycles) make up the largest category of GHG-emitting sources (ARB, 2013). In 2013, the most recent year for which data are provided, the annual California statewide GHG emissions were 459.3 million metric tons of CO₂e (ARB, 2015c). The transportation sector accounts for about 37 percent of the statewide GHG emissions inventory. The industrial sector accounts for about 20 percent of the total statewide GHG emissions inventory. The dominant GHG emitted is CO₂, primarily from fossil fuel combustion.

Impact Assessment

CEQA Criteria

The GHG emission impacts of the proposed project might occur on a regional and global scale. The potential for the proposed project to result in impacts related to GHG emissions was analyzed in relation to the questions contained in Appendix G of the State CEQA Guidelines, specifically, would the proposed project have any of the following effects:

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.

- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.
a) Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Significance Threshold: There are currently no established quantitative thresholds of significance for GHG emissions on a local, state, or national basis. However, on December 5, 2008, the SCAQMD Governing Board adopted an interim GHG significance threshold for projects where the SCAQMD is lead agency. The Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans includes five tiers of standards that could result in a finding of less-than-significant impact. The tiers include CEQA exemptions, consistency with regional GHG budgets, less-than-significant screening levels for industrial projects (10,000 metric tons of carbon dioxide equivalent [CO₂e] per year) and commercial/residential projects (3,000 metric tons per year of CO₂e), performance standards (i.e., 30 percent less than business as usual), and CO offsets. This SCAQMD interim GHG significance threshold does not necessarily apply to the proposed project because the SCAQMD is not the lead agency for the project.

On a local level, the City of Los Angeles has not adopted a significance threshold for GHG emissions and climate change. Neither CEQA statutes nor CEQA guidelines establish thresholds of significance or particular methodologies for performing an impact analysis. The determination of significance is left to the judgment and discretion of the lead agency.

As the lead agency for the proposed project, the City of Los Angeles, Department of Public Works, Bureau of Engineering has determined that the SCAQMD’s Interim CEQA GHG Significance Threshold for industrial projects will be used as a reference level to evaluate the GHG impacts associated with the proposed project. Construction emissions will be amortized over the life of the project (defined as 30 years), added to the project’s proposed stationary source operational emissions, and compared to the less-than-significant screening level of 10,000 metric tons per year of CO₂e for industrial projects.

GHG emissions increases would occur during proposed project construction and operation. GHG from project construction would include emissions from fuel combustion in construction equipment, haul trucks, and worker commute vehicles. For proposed project operation, GHG emissions from fuel combustion in the drum dryer and oil heater would contribute to the direct GHG emissions from onsite equipment. Indirect GHG emissions associated with the plant operation would include the emissions due to power generation for the proposed plant power needs. GHG emissions would also result from fuel combustion in the haul trucks used for material and product delivery.

GHG emissions increase from the proposed project construction and operation were estimated using the methodologies described in Appendix A and compared to the SCAQMD emission threshold. Because the SCAQMD CEQA threshold for GHG is for stationary industrial sources, only the emissions associated with onsite equipment operation (drum dryer, oil heater, and electricity use) were used in the comparison to the thresholds. GHG emissions estimated for project construction were amortized over 30 years, as suggested by SCAQMD (SCAQMD, 2008). The amortized construction emissions were added to the project operation emissions and compared to the SCAQMD CEQA thresholds. The emission summary is presented in Table 6. Detailed project information and assumptions used for the GHG emission calculations are provided in Appendix A.

The total GHG emission increases from the existing plant operation, including those from fuel combustion in the onsite equipment and those associated with generating electrical power used by the plant, would be 8,605.7 metric tons per year of CO₂e (refer to Table 6). The GHG emission increase is less than the SCAQMD CEQA threshold of 10,000 metric tons per year. Therefore, the project would have less than significant impact related to GHG emissions.
Table 6. Project Greenhouse Gas Emissions Increase in CO\textsubscript{2}e

<table>
<thead>
<tr>
<th></th>
<th>Onsite Equipment Mega tons/\textsubscript{year}</th>
<th>Electricity Use Mega tons/\textsubscript{year}</th>
<th>Amortized Construction Emissions Mega tons/\textsubscript{year}</th>
<th>Total Mega tons/\textsubscript{year}</th>
<th>SCAQMD Threshold Mega tons/\textsubscript{year}</th>
<th>Exceed Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Plant</td>
<td>3404.0</td>
<td>92.4</td>
<td>0</td>
<td>3496.4</td>
<td>10,000</td>
<td>NO</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>11914.1</td>
<td>135.1</td>
<td>52.9</td>
<td>12102.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Increase</td>
<td>8510.1</td>
<td>42.7</td>
<td>52.9</td>
<td>8605.7</td>
<td>10,000</td>
<td>NO</td>
</tr>
</tbody>
</table>

Note:
CO\textsubscript{2}e: Carbon dioxide equivalent
Net increase refers to the difference between the proposed project and the existing condition, because the existing plant would be demolished and associated emissions removed.

Emission increases from offsite vehicle travel are estimated to be 2,530.0 metric tons per year of CO\textsubscript{2}e. However, because the SCAQMD GHG threshold does not apply to mobile source emissions, this emission increase was not included in Table 6.

In conclusion, the project construction and operational GHG emissions would have less than significant impacts to the environment.

b) Would the project conflict with any applicable plan, policy, or regulation of any agency adopted for the purpose of reducing the emission of greenhouse gases?

Significance Threshold: A significant impact may occur if the proposed project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHG.

As discussed above, GHG emissions from the proposed project would be below the SCAQMD’s CEQA threshold. The proposed project would also implement BMPs during construction, some of which would also reduce GHG emissions. Therefore, proposed project construction would not conflict with the state GHG reduction goal, or the climate change plans of the County or the City.

Operation of the proposed project would require electrical power, but electricity for operations would be obtained from the state’s power grid, and would therefore comply with the RPS and AB 32 Scoping Plan GHG reduction strategy to meet the AB 32 GHG emission reduction goal of 2020.

Although the First Update identified and described a long-term vision and near-term activities to put California on the path to its 2050 emission reductions goal, many factors would influence the state’s ability to attain the 2050 GHG reduction goal, including changes in regulatory standards, fuel, transportation, power generation technologies, growth in population, land use development patterns, and other factors that cannot presently be known. Because reaching a conclusion about the proposed project’s effect on compliance with the 2050 target identified in EO S-3-5 and the AB 32 would require speculation, a determination about the proposed project’s potential to result in a significant impact with regard to this goal is not possible. In all other respects the proposed project would not hinder or delay California’s ability to meet the GHG reduction targets in AB 32 and the Scoping Plan. Therefore, the impact from the project would be less than significant.
In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with any applicable plan, policy, or regulation of any agency adopted for the purpose of reducing the emission of greenhouse gases?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is required.
VIII. Hazards and Hazardous Materials

Environmental Setting

Contaminated Soil

Summary of Previous Soil Investigations

A geotechnical investigation of the proposed project site was conducted in 2008 and a report documenting the findings of the investigation was prepared by the GEO on October 3, 2008. The 2008 report was reviewed by the GEO in 2015 and a supplemental report was prepared on April 14, 2015, which concluded that the site conditions had not changed, and updated some of the recommendations relating to the design and construction of the proposed project. Investigations of subsurface soil and groundwater contamination were conducted at the site between 1992 and 2008, the results of which are summarized in a report prepared by the GEO on April 9, 2015. The relevant information presented in the following sections is summarized from these reports. It is important to note that the information presented in the following sections focuses on soil contamination to a depth of 10 feet since excavation for the proposed project would not extend below 3 feet. The 2015 GEO report is provided in Appendix D.

In 2002, three exploratory borings were drilled to depths ranging from 30 to 80 feet below ground surface near the existing fuel dispensing island in order to assess impacts from a former leaking underground storage tank (UST) at the site. No samples within the 0 to 5 foot depth range were analyzed. Hydrocarbons were detected in soils ranging from 10 to 70 feet below the ground surface (GEO, 2015). A maximum contaminant concentration of 24,086 parts per million (ppm) of total petroleum hydrocarbons (TPH) was measured at a depth of 10 feet below the ground surface.

Metals did not exceed the total threshold limit concentration defining a hazardous waste or screening levels, indicating that additional testing using the California Waste Extraction Test (WET) was necessary to evaluate whether the soluble threshold limit concentration defining a hazardous waste was exceeded.

Photo Ionization detectors (PIDs) measure VOCs in soil. PID readings measured during drilling between 0 to 5 feet below the ground surface ranged from 0 to 280 ppm.

In 2005, four exploratory borings were drilled to depths of 10 to 40 feet below the ground surface in the area near an asphalt seep in the south eastern portion of the project site. Heavy range hydrocarbons and tar were detected in the upper 10 feet of the borings (GEO, 2015). Maximum contaminant concentrations of 24,086 parts per million (ppm) of total petroleum hydrocarbons (TPH) was measured at a depth of 10 feet below the ground surface.

Metals in all samples did not exceed the total threshold limit concentration or screening levels, indicating that additional testing using the WET was necessary to evaluate whether the soluble threshold limit concentration was exceeded.

PID readings measured in soil during drilling between 0 to 5 feet below the ground surface ranged from 0 to 280 ppm.

The only constituent reported as being detected within the 0 to 5 foot depth range was 0.001 ppm of Toluene. No other analyses for soil in this depth range were contained in the copy of the report available for review. No results for samples within this depth range were cited as exceeding preliminary remediation goals or maximum concentration limits. PID readings measured during drilling in soil at a depth of 0 to 5 feet below the ground surface ranged from 0 to 3,000 ppm.

No samples were analyzed from the 0 to 5 foot depth range. PID readings measured during drilling of soil from a depth of 0 to 5 feet below the ground surface ranged from 0.7 to 56 ppm.

Information on soil contamination presented in the 2008 GEO report was obtained from an investigation performed by Leighton. A maximum contaminant concentrations of 20,000 milligrams per kilogram of TPH was measured at a depth of 5 feet below the ground surface. Oil and grease and VOCs were also detected at this depth. PID readings measured in soil during drilling between depths of 0 to 5 feet below the ground surface ranged from 12 to 23 ppm.

The 2015 GEO report evaluated previously collected data; a new investigation was not performed. Key conclusions and recommendations presented in the report include the following.

- Soil contamination has been detected in every investigation performed at the site. The contamination appears to be related to fuel range hydrocarbons released from former USTs used at the site, release of diesel and heavy hydrocarbons during previous day to day activities at the site, previous land use as a manufactured gas plant and releases of hydrocarbons associated with those activities and migration of deeper, offsite contaminant plumes from neighboring facilities.

- Based on results of the previous investigations at the proposed project site, past land use, data gaps and lack of exact scope of construction for the proposed project before this report was written, it should be expected that contaminated soils can be encountered anywhere excavation is advanced at the site. Contaminated soils will consist of a combination of stained, discolored, odiferous hydrocarbon-bearing soils possibly with tar globules. It is also likely that heavy metals, particularly lead, will be encountered in shallow soils.

- It was recommended that excavation at the proposed project site be limited as much as possible to avoid disturbing contaminated soils. Where excavation is necessary to construct the proposed project, it was recommended for budgeting purposes, to assume that 70 percent of the contaminated soil will be classified as non-hazardous waste (requiring disposal at a Class II disposal facility) and that 30 percent of the contaminated soil will be classified as hazardous waste (requiring disposal at a Class I disposal facility). The following section discusses classification of contaminated soil in further detail.
Classification of Contaminated Soil

Hazardous Waste Classification

Based on the results of previous soil investigations, the primary contaminants in shallow soil at the proposed project site are petroleum hydrocarbons, with diesel range fractions as high as 20,000 ppm and heavier fractions exceeding 40,000 ppm. However, it is important to note that given the variability in hydrocarbon concentrations in the data reviewed, it is unlikely that all excavated soil would exhibit contamination at this level.

Hazardous waste characteristic levels do not exist for petroleum fractions, and hazardous waste classification is based on the concentrations of specific compounds associated with petroleum-containing waste, such as benzene and lead. None of the previous soil investigation data reviewed exceeded hazardous waste characteristic levels for those compounds. Although the 2015 GEO report states that it is “likely that heavy metals, particularly lead, will be encountered in shallow soils” the only previous soil investigation reports that included metals data (Pinnacle 2002 and Pinnacle 2005) indicated that metals do not exceed hazardous waste limits.

As petroleum concentrations in soil increase, the likelihood increases that soils exhibit the hazardous waste characteristic of aquatic toxicity. Disposal sites will typically not accept soil with petroleum concentrations in the range of 10,000 ppm or higher without results from a hazardous waste fish bioassay indicating that the waste does not exhibit this characteristic. Because soil in some areas of the project site contain petroleum concentrations in this range, such testing would be conducted as part of the waste profiling process that would be necessary to remove soil from the project site following excavation.

Any soil that exhibits this characteristic of aquatic toxicity would be classified as a non-Resource Conservation and Recovery Act (RCRA) hazardous waste. Although it is not possible to predict the quantity of soil, if any, that would exhibit this characteristic based on the data in the previous soil investigations, the estimate of 30 percent hazardous and 70 percent non-hazardous provided in the 2015 GEO report is considered reasonable and has been assumed for the proposed project.

Rule 1166 Classification

SCAQMD Rule 1166, Volatile Organic Compound Emissions from Decontamination of Soil specifies monitoring and reporting requirements for persons “excavating or grading soil containing VOC materials.” VOC Materials “include gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvent, resin, monomer, and/or any other material containing VOC.” Based on data in the previous soil investigations, excavation of contaminated soil at the project site will trigger Rule 1166 requirements. These requirements are detailed in Section VIII (a) of this IS.

Groundwater

Free groundwater was not encountered in any of the exploratory borings drilled in 2008. Subsurface investigations conducted in 2006 and 2007 observed perched groundwater at a depth of 123 feet below ground surface. The shallowest recorded historic depth to groundwater in the area of the project site is in the order of 150 feet below ground surface (GEO, 2008). Groundwater would not be intercepted during construction of the proposed project and therefore is not discussed further in this section.
Hazardous Building Materials

A hazardous material survey of the plant buildings and equipment was conducted by Integrity Environmental Consultants, Inc. on October 29, 2015. The survey was conducted for asbestos-containing materials, lead-based paint and other hazardous building materials. Asbestos-containing materials were identified in the office building, office room/locker room/tool room, control panel room, old control room, and compressor room. Asbestos-containing materials occur in the floor tiles, in the adhesive under the floor tiles, in the adhesive under the carpet, and in some of the roofing materials. There are also additional areas which are suspected of having asbestos-containing materials which would be investigated further prior to demolition. Lead-based paint was identified in the office building, office room/locker room/tool room, control panel room, storage room, several storage bins, a silo and on the posts of the fence line. Other hazardous materials such as polychlorinated biphenyls (PCB) ballasts in fluorescent light fixtures and Freon refrigerants in the wall mounted air conditioning units were also identified. The Hazardous Material Building Survey report is included as Appendix E.

Methane

The proposed project site is located within a methane zone as delineated by the Los Angeles Department of Building and Safety (GEO, 2015). Methane testing was conducted at the proposed project site in October, 2015 and confirmed that the site is located within a methane zone (refer to Appendix F).

Impact Assessment

a) Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Significance Threshold: A significant impact may occur if the proposed project utilizes substantial amounts of hazardous materials as part of its routine operations and could potentially pose a hazard to the public under accident or upset conditions.

Contaminated Soil

The proposed project has been designed to minimize the disturbance of contaminated soils during construction. For example, the depth of excavation beneath areas which are to be paved would be limited to a maximum depth of 3 feet below ground surface and plant equipment would be supported by driven steel piles rather than cast-in-place drilled hole piles. Despite these measures, it is estimated that approximately 10,680 cubic yards of contaminated soil would need to be excavated during construction.

As detailed in the section above, previous soil investigations conducted at the proposed project site indicate it is likely that some contaminated soils excavated from the site would be classified as non-RCRA hazardous waste. These contaminated soils would be handled in the following way:

- Soils would be screened based on visual and olfactory cues and PID readings at the time of excavation. Screening levels would be established for presumptively classifying heavily contaminated soil as non-RCRA hazardous waste until final classification can be confirmed through laboratory analysis.

- Any soil which is classified as non-RCRA hazardous waste based on laboratory analysis would be stored onsite in containers or stockpiles for a maximum of 90 days from when the waste is first placed in the container or stockpile. If containers (e.g., roll-off boxes) are used for holding any non-RCRA hazardous waste they would be required to meet US Department of Transportation specifications, would be kept closed except when adding or removing waste, and would be inspected weekly. California hazardous waste rules authorize temporary stockpiling of non-RCRA hazardous waste soil without a permit if the stockpile has a high-density polyethylene liner (or equivalent), has water and wind erosion control, is inspected weekly, and
is certified by a California-registered professional engineer that these requirements have been met. Any contaminated material underlying the stockpile must also be removed and certified as such by a California-registered professional engineer.

- Contaminated soil which is not classified as hazardous waste would be stored in a similar manner to that which is classified as hazardous. This is because although a similar storage requirement does not exist for non-hazardous waste, regulatory agencies generally accept temporary stockpiling of contaminated soil not classified as hazardous waste if precautions similar to those described above are taken to contain the contaminated soil and protect water quality. There is no accumulation time limit for onsite storage of non-hazardous waste.

As detailed in the section above, excavation of contaminated soil at the project site triggers the notification and reporting requirements of SCAQMD Rule 1166, and may trigger the rule’s soil management standards if VOC contaminated soil, as defined by the rule, is encountered during excavation. Soil management standards are triggered if VOC-contaminated soil is encountered. VOC-contaminated soil is defined as “a soil which registers a concentration of 50 ppm or greater of Volatile Organic Compounds as measured before suppression materials have been applied and at a distance of no more than three inches from the surface of the excavated soil with an organic vapor analyzer calibrated with hexane.” Given that previous soil investigations have reported PID readings above 50 ppm at depths between 0 and 5 feet, it is likely that at least some of the soil being excavated from the proposed project site would be regulated as VOC-contaminated. In order to verify that VOC-contaminated soils as defined by the SCAQMD Rule 1166 are present at the proposed project site, VOC emissions from excavated soil would be monitored every 15 minutes commencing at the beginning of excavation, and the results recorded. If VOC-contaminated soil is encountered, the following protocol would be followed.

- SCAQMD would be notified within 24 hours.
- VOC-contaminated soil would be segregated from other soil.
- VOC-contaminated soil stockpiles would be sprayed with water or vapor suppressant and covered with plastic sheeting for all periods of inactivity lasting more than 1 hour.
- All covered stockpiles would be inspected daily and the inspection results recorded.
- VOC contaminated soil would be removed within 30 days of excavation.
- Soil with VOC-concentrations greater than 1,000 ppm would be sprayed with water or vapor suppressant and placed in closed containers or loaded onto trucks within 15 minutes.
- Trucks loaded with VOC-contaminated soil would be loaded so that no soil extends above the sides or rear of the truck or trailer, and the soil would be covered. Any soil on the exterior of the truck and the tires would be removed prior to the truck leaving the proposed project site.
- A report would be submitted to SCAQMD at the conclusion of the proposed project.

Transport of contaminated soils offsite would be performed by licensed hazardous waste haulers. Disposal would comply with applicable local, state, and federal regulations governing disposal of hazardous materials, including transport by a licensed waste hauler and disposal at a properly certified facility.
Prior to the initiation of excavation activities a contaminated soils management plan would be prepared that details the requirements described above for screening, segregating, sampling, stockpiling/storing, transporting and disposing of contaminated soils offsite. The plan would also include regulatory agency reporting requirements.

A site-specific Health and Safety Plan (HSP) would be prepared and implemented. The HSP would detail procedures and protocols to ensure worker and visitor safety onsite. For example, it would require construction personnel working in the vicinity of contaminated soils to have 40 Hour Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) training with up to date refreshers, it would describe the level of protective clothing and equipment required for construction personnel, and would require an industrial hygienist to be onsite during excavation activities to monitor air quality and health and safety conditions.

With implementation of the requirements of the contaminated soil management plan, the HSP, and compliance with applicable laws and regulations governing excavation, handling, storage and disposal of contaminated soils, there is no evidence that contamination associated with the proposed project site would create a significant hazard to the public or the environment related to the transport or disposal of hazardous materials. Therefore, the impact associated with construction of the proposed project is less than significant.

Hazardous Building Materials

As detailed above, some of the building materials at the existing plant contain hazardous materials such as asbestos, lead, PCBs and Freon refrigerants. These materials would be removed by qualified professionals. A California-licensed and registered asbestos abatement contractor would remove asbestos prior to demolition. All loose, flaking, peeling or otherwise deteriorating paints (irrespective of lead content) would be cleaned and stabilized (paint scraped and scraped surfaces encapsulated with a lead paint primer) prior to demolition and removal by California Department of Public Health-certified workers. All hazardous waste materials that are removed prior to demolition would be properly handled and transported by licensed hazardous waste haulers for disposal at an appropriately licensed hazardous waste facility. For example, asbestos materials must be transported in sealed, leak-tight, non-returnable containers from which fibers cannot escape and the material must be wet to prevent fibers from blowing around in the unlikely event a container is broken. Fluorescent lamps and tubes would either be recycled or disposed of at a hazardous waste facility. Refer to Appendix E for further information on the removal, handling, and disposal requirements. Appropriate removal, handling and transportation of hazardous building materials would ensure that the proposed project would not create a significant hazard to the public or the environment related to the transport and disposal of hazardous demolition materials. Therefore, the impact associated with construction of the proposed project is less than significant.

Methane

The proposed project site is located in a methane zone and therefore the proposed project has been designed to incorporate a passive vent system for the purpose of venting methane gas. The passive vent system would consist of perforated horizontal pipes, a gravel blanket under an impervious membrane, and vent risers. The horizontal pipes would be placed beneath the foundation of the buildings for the purpose of venting accumulated methane gas and preventing the development of elevated gas pressures. The horizontal pipes would be connected to the vent risers. The impervious membrane is a continuous gas barrier which would be installed beneath the buildings to prevent methane from migrating into the interior of the building. The impervious membrane would be installed beneath the building slab, on the exterior surface of building walls from the finished grade level to a minimum of 6 inches below the bottom of the adjoining slab, and around the
sides of piles (refer to Appendix F for further information). Installation of the passive vent system would ensure methane gas is vented properly and that the proposed project has a less than significant impact.

Asphalt and Asphalt Oil

Asphalt is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). According to the Material Safety Data Sheet, the hazards associated with asphalt include eye and skin burns from contact with the hot material and fumes from hot asphalt can cause skin, eye and respiratory irritation (http://www.montmech.com/hasp/MISC/MSDS/MSDS%20files%5C12007%20Asphalt.pdf). Asphalt oil used in the production of asphalt is also considered hazardous.

As is the case for the existing plant, operation of the proposed project involves the routine transportation of asphalt oil to the proposed project site and asphalt from the site to construction sites within the City. To ensure routine transportation of asphalt oil and asphalt does not pose a significant risk to the public or the environment, the trucks are enclosed and equipped with safety features including warning devices. The asphalt oil trucks have additional safety features such as fuel pump relief valve protection and immediate shut off and reverse flow capability. Drivers are trained and certified to operate the trucks and respond to emergency situations should they arise. The trucks are required to be fitted with labels identifying the hazardous materials to responders in the event of an emergency. These safety features, along with driver operation and emergency response training would ensure that operation of the proposed project would have a less than significant impact on the public under accident or upset conditions.

b) Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Significance Threshold: Refer to VIII(a) above.

As discussed under Section VIII (a) above, the proposed project site contains contaminated soils and buildings and structures contaminated with asbestos, lead, and other hazardous materials, which could pose a health and safety hazard during construction. During operation, the proposed project involves transportation of asphalt and asphalt oil which are hazardous materials and could pose a health and safety hazard. However, through compliance with management plans and applicable rules and regulations governing storage, transport, disposal, and abatement of hazardous materials it is not anticipated that construction or operation would pose a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment. Therefore, the proposed project would have a less than significant impact.

c) Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Significance Threshold: A significant impact may occur if the proposed project were located within one-quarter mile of an existing or proposed school site and were projected to release toxic emissions, which pose a hazard beyond regulatory thresholds.

The closest school to the proposed project site is the Carmen Lomas Garza Primary Center in Boyle Heights which is located approximately 0.4 miles to the east, and there are no new schools proposed in close vicinity. Therefore, the proposed project would not emit or handle hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school and there would be no impact. The proposed project would however require transportation of some hazardous waste (contaminated soil and demolished building materials) and asphalt product within approximately 200 feet of the school. It is anticipated that less than 25 percent of trucks transporting asphalt product would travel along E. Olympic Boulevard and Soto Street to access I-10. The
hazardous waste facility which would receive hazardous waste from project construction is not known but it is reasonable to assume that some hazardous waste would be transported along E. Olympic Boulevard and Soto Street past the school. As detailed in Section VIII (b), these materials would be enclosed or covered as appropriate during transportation and would be transported by licensed and trained vehicle operators.

d) Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Significance Threshold: A significant impact may occur if the proposed project were located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment.

Government Code Section 65962.5(a)(2) requires the Department of Toxic Substances Control to compile and update as appropriate, and submit to the Secretary for Environmental Protection, a list of all land designated as hazardous waste property or border zone property pursuant to Article 11 of Chapter 6.5 of Division 20 of the Health and Safety Code. No facilities or lands are currently listed under this provision because Department of Toxic Substances Control has not designated any hazardous waste property or border zone property pursuant to the cited provisions (CAL-EPA, assessed on 10/13/2015 http://www.calepa.ca.gov/SiteCleanup/CorteseList/SectionA.htm).

Government Code Section 65962.5(c)(1) requires the State Water Resources Control Board to compile and update as appropriate, and submit to the Secretary for Environmental Protection, a list of all underground USTs for which an unauthorized release report is filed pursuant to Section 25295 of the Health and Safety Code. The State Water Resources Control Board maintains a list of these sites on Geotracker, an internet database. Review of this database indicates that there was a leaking UST at the proposed project site but the leaking UST site is now closed. The underground fuel storage tank currently at the proposed site is not listed on the Geotracker database.

The proposed project site does not contain any active hazardous materials sites compiled pursuant to Government Code Section 65962.5 and therefore there would be no impact.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

Significance Threshold: A significant impact may occur if the proposed project site were located within a public airport land use plan area, or within two miles of a public airport, and would create a safety hazard.

The proposed project site is not located within an airport land use plan or within 2 miles of a public airport or public use airport. The proposed project site is located approximately 9 miles northeast of Hawthorne Municipal Airport, 14 miles southeast of Burbank Airport, 10 miles northeast of Los Angeles International Airport, 12 miles southwest of El Monte Airport, and 11 miles east of Santa Monica Airport. Therefore, no safety hazard associated with proximity to an airport is anticipated for the proposed project and there would be no impact.

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

Significance Threshold: A significant impact may occur if the proposed project is in the vicinity of a private airstrip and would result in a safety hazard for people residing or working in the project area.
The proposed project site is not located in the vicinity of a private airstrip. Therefore, no safety hazard from proximity to a private airport or airstrip is anticipated from the construction and operation of the proposed project and there would be no impact.

g) Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Significance Threshold: A significant impact may occur if the proposed project were to substantially interfere with roadway operations used in conjunction with an emergency response plan or evacuation plan or would generate sufficient traffic to create traffic congestion that would interfere with the execution of these plans.

No road closures are anticipated to be necessary during construction. During construction, vehicles and equipment would access the proposed project site via the existing driveways located off the frontage road that runs parallel to E. Olympic Boulevard. As part of the construction activities, the site entrances would be improved and new security gates installed, however, this would not impact use of the frontage road. During construction, ingress and egress to the proposed project site and surrounding properties, particularly for emergency response vehicles, would be maintained at all times. In addition, operation would not alter the adjacent street system. Therefore, construction and operation of the proposed project would not impair or interfere with implementation of an adopted emergency response plan or emergency evacuation plan and the impact is less than significant.

h) Would the project expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Significance Threshold: A significant impact may occur if the proposed project were located in a wildland area and poses a significant fire hazard, which could affect persons or structures in the area in the event of a fire.

According to the Selected Wildfire Hazard Areas map (Exhibit D) of the Safety Element of the Los Angeles City General Plan the proposed project site is not located within an area prone to wildland fire hazards. The proposed project site and surrounding areas are completely developed for industrial purposes and there are no wildlands adjacent to the proposed project site. Therefore, no impact involving wildland fires is anticipated from the construction and operation of the proposed project.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
<table>
<thead>
<tr>
<th>Item</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>h)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
IX. Hydrology and Water Quality

Environmental Setting

Surface water runoff from the majority of the proposed project site, excluding the leased property to the south, drains in a northerly direction towards the frontage road (refer to Figure 2). There is no stormwater drain or inlet on the frontage road. A roadway gutter runs along the edge of the frontage road and drains to the west towards S. Santa Fe Avenue. The edges of the frontage road flood when it rains. Catch basins are located at the intersection of E. Olympic Boulevard and S. Santa Fe Avenue which conveys runoff to a mainline which directs stormwater in a southerly direction along S. Santa Fe Avenue. There are two low points near the center of the proposed project site which pond when it rains. A portable pump and hose is used to empty the ponded water and discharge it to the frontage road.

The leased property is approximately 2.5 to 4 feet lower than the area of the proposed project site where the existing plant is located. Surface water runoff from the leased property flows in a south westerly direction towards the southwest corner of the proposed project site. During a field inspection of this area on July 17, 2015 by CH2M HILL Engineers, Inc. (CH2M), deposits of sediment were observed at the southwest corner of the proposed project site. CH2M water engineers deduced that temporary ponding and sedimentation occurred in this area as a result of the placement of hay barrels along the site boundary. Water which flows to the southwest corner of the leased property is likely to drain in a northerly direction towards the frontage road via the roadway gutter along the access road between the proposed project site and the waste management property. Water then flows in the roadway gutter along the frontage road towards the catch basin located at the intersection of E. Olympic Boulevard and S. Santa Fe Avenue.

There are no surface water treatment systems at the proposed project site currently and therefore surface water runoff has the potential to contribute trash, oil and grease, hydrocarbons, heavy metals, and suspended solids to the storm water conveyance system. As detailed in the following section, the proposed project would improve surface water management and treatment at the proposed project site by regrading the site to improve drainage and installing drywells to treat runoff. Drywells remove sediment, nutrients, bacteria, and metals from stormwater while also reducing stormwater flows.

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map for Los Angeles County and the 100-Year and 500 Year Flood Plains map (Exhibit F) of the Safety Element of the Los Angeles City General Plan, the proposed project site is not located within the a 100-year and 500-year floodplains.

The Los Angeles Coastal Plan consists of the West Coast and Central Basins. The proposed project site is located in the Central Basin. The proposed project site and surrounding area are not used for groundwater recharge or supply. Groundwater currently provides about 40 percent of the total water used in the West Coast and Central Basins. Depth to groundwater in the Central Basin has been 108 feet on average from 1964 through 2002. The shallowest recorded historic depth to groundwater in the area of the proposed project site is in the order of 150 feet below ground surface (GEO, 2008).

Impact Assessment

a) Would the project violate any water quality standards or waste discharge requirements?

Significance Threshold: A significant impact may occur if the proposed project discharged water did not meet the quality standards of agencies that regulate surface water quality and water discharge into stormwater drainage systems such as the Los Angeles Regional Water Quality Control Board (LARWQCB). These regulations include compliance with the Standard Urban Storm Water Mitigation Plan requirements to reduce potential water quality impacts.
Soil exposure during excavation, grading, and other construction activities under the proposed project would potentially result in erosion and sediment into the stormwater conveyance system. Thus, the proposed project has the potential to violate water quality standards during construction if proper controls are not implemented. Onsite excavation, grading and site preparation would comply with all applicable provisions of Chapter IX, Division 70 of the Los Angeles Municipal Code, which addresses grading, excavation, and fill activities. Further construction would be required to comply with applicable requirements pertaining to stormwater and urban runoff. This includes compliance with City Ordinance 172,176 which pertains to control and regulation of discharges to the storm drain system and receiving water; Ordinance 172,673 which requires implementation of storm water pollution control measures for construction activities; and Ordinance 173,494 which provides stormwater pollution control for planning and construction of development and redevelopment projects and requires the establishment of BMPs to control site runoff. These BMPs would be detailed in a SWPPP and would be in compliance with the latest National Pollutant Discharge Elimination System Stormwater Regulations. BMPs would include covering stockpiles of material to prevent water erosion and use of fiber roll along the perimeter of the site to prevent sedimentation offsite. With implementation of construction BMPs to minimize and control soil erosion and site runoff, significant impacts to water quality from site runoff during construction are not expected.

The City LID Ordinance took effect on May 12, 2012 and include implementation of stormwater management strategies that seek to mitigate the impacts of increases in runoff and stormwater pollution as close to its source as possible. LID comprises a set of site design approaches and BMPs that promote the use of natural systems for infiltration, evapotranspiration, and the use of these systems to cleanse water of pollutants. Consistent with LID site design approaches, runoff from the proposed project site would be properly treated by drywells which would be installed along the northern and eastern boundaries of the site. Indicative locations for the drywells are shown on Figure 3. Stormwater runoff from the proposed project site is currently untreated, and because the drywells would remove pollutants from runoff prior to it leaving the proposed project site, operation of the proposed project would improve the quality of stormwater runoff discharged from the proposed project site. Improving the quality of stormwater runoff discharged from the site would help the City avoid or minimize the potential for future violations of water quality standards and is a benefit of the proposed project.

b) Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

Significance Threshold: A project would normally have a significant impact on groundwater supplies if it were to result in a demonstrable and sustained reduction of groundwater recharge capacity or change the potable water levels sufficiently that it would reduce the ability of a water utility to use the groundwater basin for public water supplies or storage of imported water, reduce the yields of adjacent wells or well fields, or adversely change the rate or direction of groundwater flow.

Construction and operation of the proposed project would not utilize groundwater nor deplete groundwater supplies and therefore no impacts are anticipated.

With the exception of a small area of ornamental plantings near the administration office, the existing project site consists entirely of impervious surfaces. Construction of the proposed project would result in demolition of the existing onsite structures and pavement, and excavation of soil, which would result in a temporary increase in pervious surfaces on the site. An increase in pervious surfaces would temporarily allow more water to percolate into the soil. As detailed in Section VIII, Hazards and Hazardous Materials of this IS, there are contaminated soils at the proposed project site and therefore it is desirable to limit water infiltration in order to prevent the migration of contaminants offsite. Therefore, the area and length of time impervious surfaces are
exposed at the site during construction would be limited as much as is practicable by conducting initial paving and constructing the building foundations as soon as possible after completion of the utility and civil works.

With the exception of small landscaped areas along the perimeter, the entire surface of the proposed project site during operation would be impervious, including the swales. The swales would consist of surface graded permeable pavers which would have an impervious liner beneath a layer of soil. The drywells would be installed at locations and depths where contaminated soils are not present to prevent infiltration of stormwater into contaminated soils at the proposed project site. The locations and depths of the drywells would be determined during detailed design (indicative locations for the drywells are shown on Figure 3).

c) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

Significance Threshold: A significant impact may occur if the proposed project resulted in a substantial alteration of drainage patterns that resulted in a substantial increase in erosion or siltation during construction or operation of the project.

The proposed project would not alter the course of a stream or river.

The area of the proposed project site where the existing plant is located would be regraded in a way that generally maintains the existing drainage pattern during operation of the proposed project. However, a high spot would be created in the center of the property to eliminate ponding which currently occurs in this area. The majority of runoff from the area where the existing plant is located would drain to swales which would be installed along the western and eastern site boundary. The swales would convey the runoff to the drywells, which would treat the low flow by removing sediment, nutrients, bacteria, and metals from stormwater and reducing stormwater flow through infiltration. During the high flow, swales and drywells would convey high-flow runoff from the proposed project site toward the roadway gutter along the frontage road and into the catch basins located at the intersection of E. Olympic Boulevard and S. Santa Fe Avenue.

The leased property portion of the proposed project site would not be regraded and would only be grinded to overlay asphalt. The runoff would have the same drainage pattern as under current conditions within the leased property.

The drainage concept for the proposed project would generally maintain the same flow pattern at the site and would not result in erosion or siltation on or offsite during operation, and, therefore, impacts would be less than significant. Raising the center of the property to eliminate ponding and installing drywells to reduce stormwater flow offsite would have a beneficial effect on drainage.

The potential for erosion and siltation to occur during construction of the proposed project is discussed in Section IX(a) of this IS.

d) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

Significance Threshold: A significant impact may occur if the proposed project resulted in increased runoff volumes during construction or operation of the proposed project that would result in flooding conditions affecting the proposed project site or nearby properties.
As detailed in Section IX(c) above, the proposed project site would be regraded to eliminate ponding which currently occurs in the center of the property. Drywells would be installed to reduce stormwater flow. Therefore, the proposed project would have a beneficial effect of reducing stormwater flow and eliminating ponding onsite. By reducing stormwater flow from the proposed project site, the proposed project would have a beneficial impact on the frontage road which currently floods along the edges of the road when it rains. The proposed project would have a less than significant impact.

e) Would the project create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

Significance Threshold: A significant impact may occur if the volume of runoff were to increase to a level that exceeded the capacity of the storm drain system serving a project site. A significant impact may also occur if the proposed project would substantially increase the probability that polluted runoff would reach the storm drain system.

The proposed project would neither create nor contribute runoff water which would provide substantial additional sources of polluted runoff because, as detailed in the sections above, the drywells along the northern and eastern boundary of the proposed project site would remove sediment, nutrients, bacteria, and metals from stormwater and would improve the quality of stormwater discharged from the site. The drywells would reduce stormwater flow from the proposed project site and therefore would have a beneficial effect on the stormwater drainage system along the frontage road which currently floods along the edges of the road when it rains.

f) Would the project otherwise substantially degrade water quality?

Significance Threshold: Refer to Section IX(a) above

Refer to Section IX(a) of this IS.

g) Would the project place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

Significance Threshold: A significant impact may occur if the proposed project were to place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map.

The proposed project would not place housing within a 100-year flood hazard area and, therefore, no impact would occur.

h) Would the project place within a 100-year flood hazard area structures which would impede or redirect flood flows?

Significance Threshold: A significant impact may occur if the proposed project were to place, within a 100-year flood hazard area, structures that would impede or redirect flood flows.

The proposed project site is not located within a 100-year floodplain and therefore would not place structures within area which would impede or redirect 100-year flood flows and, therefore, no impact would occur.

i) Would the project expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?
Significance Threshold: A significant impact may occur if the proposed project were located in an area where a dam or levee could fail, exposing people or structures to significant risk of loss, injury or death.

As indicated above, the proposed project site is not located within a 100-year floodplain. However, the site is located within an inundation area of a dam or levee as identified on the Inundation and Tsunami Hazard Areas map (Exhibit G) of the Safety Element of the Los Angeles City General Plan. In the event of an emergency, the City has adopted emergency evacuation procedures that would be implemented in the case of a dam break. Plant personnel are currently aware of these evacuation procedures and would continue to receive regular refreshers on the procedures. Construction personnel would receive training on the evacuation procedures. Therefore, construction and operation of the proposed project would not result in exposure of people or structures to significant risk of loss, injury or death related to flooding or dam inundation.

j) Would the project contribute to risk of inundation by seiche, tsunami, or mudflow?

Significance Threshold: A significant impact may occur if the proposed project would cause or accelerate geologic hazards, which would result in substantial damage to structures or infrastructure, or expose people to substantial risk of injury.

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. Although the proposed project site is located adjacent to the Los Angeles River, the River is not considered an enclosed large body of water that could experience seiches during an earthquake. Therefore, there is no potential for seiches to impact the proposed project site and no impact would occur.

Tsunamis are tidal waves generated in large bodies of water caused by fault displacement or major ground movement. Hazardous tsunamis, which are rare along the Los Angeles coastline, have the potential to cause flooding in the low-lying coastal areas. According to the Inundation and Tsunami Hazard Areas map (Exhibit G) of the Safety Element of the Los Angeles City General Plan, the proposed project site is not located within a tsunami hazard area. Therefore, there is no impact associated with the construction and operation of the proposed project.

The proposed project site is not located in an area considered susceptible to seismically-induced landslides. Therefore, no impact associated with inundation from mudflow is anticipated.

In summary, the proposed project would have the following impacts:

- Potentially Significant Impact
- Less Than Significant with Mitigation Incorporated
- Less-than Significant Impact
- No Impact

- a) Violate any water quality standards or waste discharge requirements? ☐ ☐ ☒ ☐
CEQA Initial Study/Mitigated Negative Declaration

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level, which would not support existing land uses or planned uses for which permits have been granted)?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

f) Otherwise substantially degrade water quality?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

j) Inundation by seiche, tsunami, or mudflow?

<table>
<thead>
<tr>
<th>Impact Level</th>
<th>Mitigation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>Less Than Significant with Mitigation Incorporated</td>
<td>☑</td>
</tr>
<tr>
<td>Less-than Significant Impact</td>
<td>☑</td>
</tr>
<tr>
<td>No Impact</td>
<td>☐</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
X. Land Use and Planning

Environmental Setting

The proposed project would be constructed on approximately 1.9 acres of land that is the site of the existing Asphalt Plant No. 1. The proposed project would also continue to utilize the 1-acre leased property to the south. The 2.9-acre is located in the City of Los Angeles General Plan Central City North Community planning area, within a land use area designated as “heavy industrial” (City of Los Angeles, 2000). The project features would be constructed on two parcels, both of which fall within the City of Los Angeles River Improvement Overlay District (Ordinance Nos. 183144 and 183145), and within the Enterprise Zone/Employment and Economic Incentive Program Area (ZI No. 2129) (City of Los Angeles, 2015).

Impact Assessment

a) Would the project physically divide an established community?

Significance Threshold: A significant impact would occur if the project includes features such as a highway, above-ground infrastructure, or an easement that would cause a permanent disruption to an established community or would otherwise create a physical barrier within an established community.

The proposed project would be constructed entirely on the existing asphalt plant site, and does not include features such as a highway, above-ground infrastructure, or an easement that would cause a permanent disruption to an established community or would otherwise create a physical barrier within an established community. Therefore, construction and operation of the proposed project would not physically divide an established community and no impact would occur.

b) Would the project conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

Significance Threshold: A significant impact may occur if the proposed project were inconsistent with the General Plan, or other applicable plan, or with the site’s zoning if designated to avoid or mitigate a significant potential environmental impact.

The proposed project would be constructed entirely on the existing asphalt plant site, within a land use area designated as “heavy industrial” in the local community planning area (City of Los Angeles, 2000), which is a compatible use, and consistent with the General Plan. The two parcels that comprise the proposed project site are located within two zoning districts, The River Improvement Overlay District (ZI2358) and the Enterprise Zone/Employment and Economic Incentive Program Area (ZI2129). Projects constructed within the River Improvement Overlay District must submit project plans to the Department of City Planning and obtain an Administrative Clearance concurrent with their application for a building permit. Projects constructed with an Enterprise Zone/Employment and Economic Incentive Program Area may utilize a lower parking ratio for certain types of businesses, and have different building height requirements.

Requirements of the River Improvement Overlay District would be met through the proposed project design and approval process. The proposed project does not include special parking or height elements that require the allowances included in the Enterprise Zone/Employment and Economic Incentive Program Area. As a result, construction and operation of the proposed project would not conflict with an applicable land use plan or policy and no impact would occur.
In addition, because there are no resources on the proposed project site that fall under the jurisdiction of regulatory agencies (for example, a water body under the jurisdiction of the Army Corps of Engineers, or habitat under the jurisdiction of the US Fish and Wildlife Service), neither construction nor operation of the proposed project would conflict with any applicable regulation of an agency adopted for the purposes of avoiding or mitigating an environmental effect and no impact would occur. The absence of jurisdictional resources is addressed under the appropriate resource headings in this document.

c) **Would the project conflict with any applicable habitat conservation plan or natural community conservation plan?**

Significance Threshold: A significant impact may occur if the proposed project were located within an area governed by a habitat conservation plan or natural community conservation plan and would conflict with such plan.

As explained in Section IV, Biological Resources, the proposed project is not located within an area governed by a habitat conservation plan or natural community conservation plan. Therefore, construction and operation of the proposed project would not conflict with a habitat conservation plan or natural community conservation plan, and no impact would occur.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
XI. Mineral Resources

Environmental Setting

Underlying the City of Los Angeles are finite deposits of non-renewable mineral resources, including petroleum and natural gas, limestone, and aggregate (e.g., rock, sand, and gravel).

Sand and gravel deposits in the City of Los Angeles follow the Los Angeles River flood plain, coastal plain and other water bodies and courses. Mineral resource sites within the City have been classified by the state geologist into Mineral Resource Zones (MRZ), according to the known or inferred mineral potential of such sites. MRZ-2 sites are those containing potentially significant sand and gravel deposits, which are to be conserved. MRZ-2 sites are identified in Exhibit A of the Conservation Element of the City of Los Angeles General Plan.

While there are MRZ-2 sites within the City, much of the area within these sites was developed with structures prior to the MRZ-2 classification and, therefore, are unavailable for extraction (City of Los Angeles 2001). The proposed project site is one such area that was filled and developed for the purposes of asphalt production prior to being classified as an MRZ-2 site.

The California Department of Conservation identifies aggregate production areas in the state. According to mapping by the California Department of Conservation, the proposed project site is not located in an area of aggregate production (http://www.conservation.ca.gov/cgs/information/publications/ms/Documents/MS_52_2012.pdf).

Petroleum extraction and refining are important industries in Los Angeles. Petroleum deposits underlie portions of downtown and west Los Angeles, the harbor area and the Santa Monica and San Pedro bays. Twenty producing oil fields lie wholly or partially within the City (City of Los Angeles, 2001). Petroleum deposits within the City are identified by the California Department of Conservation, Division of Oil, Gas and Geothermal Resources and the City of Los Angeles. According to mapping by the California Department of Conservation, the proposed project site is not located in an area with known oil or gas resources (http://energyalmanac.ca.gov/petroleum/documents/MAP_OIL_GAS_GEOTHERMAL.PDF). Petroleum and gas deposits within the City are identified on Exhibit A of the Conservation Element of the City of Los Angeles General Plan. According to Exhibit A, the proposed project site is not located in an area of petroleum extraction.

Impact Assessment

a) Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

Significance Threshold: A significant impact may occur if the proposed project is located in an area used or available for extraction of a regionally important mineral resource, if the project converts a regionally important mineral extraction use to another use, or if the project affects access to such use.

The proposed project site is not located in an area with oil or gas reserves. The proposed project site is located within an MRZ-2 site that contains potentially significant sand and gravel deposits. However, because the proposed project site has been previously filled and developed for the purpose of asphalt production the site is currently unavailable for extraction. While the proposed project would involve demolition and replacement of the existing plant, sand and gravel in areas of the proposed project site is known to be contaminated with hydrocarbons and would not be suitable for mineral extraction. It was recommended that excavation of the proposed project site be minimized wherever possible to avoid disturbing contaminated material (refer to Section VIII - Hazards and Hazardous Materials for further information). Therefore, the proposed project would not result in the loss of availability of a known mineral resource and no impact would occur.
The proposed project would result in an increase in the quantity of aggregate used in HMA production at the proposed project site. The quantity of aggregate would increase from approximately 170,000 to 340,000 tons per year. However, it would use a lower proportion of aggregate compared to the quantity of HMA currently produced because it would increase the use of RAP. The existing plant currently uses approximately 20,000 tons per year of RAP and the proposed project would use approximately 340,000 tons per year.

b) Would the project result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

Significance Threshold: Refer to Section XI(a) above.

In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant Impact with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
XII. Noise

Environmental Setting
The proposed project site is highly developed and disturbed, consisting of the existing asphalt recycling and production plant with ancillary buildings and asphalt-concrete areas, and the property leased by the City for parking and equipment storage associated with the existing plant. The existing facilities at the plant include covered aggregate storage bins, RAP storage bins, above ground and subterranean conveyor systems, asphalt processing equipment, a gas and oil building, fuel dispenser, a single story administration building, and single story maintenance building.

The proposed project site is situated in a heavy industrial area. It is bounded to the north by E. Olympic Boulevard, and further to the north is a document destruction and waste paper recycling facility. Immediately to the west and south is a waste management facility. To the east of the proposed project site is a series of Amtrak railroad tracks, and beyond the tracks to the east (approximately 325 feet from the existing plant property) is the Los Angeles River.

The nearest sensitive receptor to the proposed project site is the multi-family residential area of Rio Vista Village which is located approximately 1,500 feet to the east. The Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights are located approximately 2,100 feet to the east.

Impact Assessment

a) Would the project result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Significance Threshold: A significant impact may occur if the proposed project were to expose persons to or generate noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

California State Government Code Section 65302 mandates that noise elements be included in city general plans and that cities adopt comprehensive noise ordinances to manage noise (City of Los Angeles, 1999). The Los Angeles City General Plan Noise Element (Noise Element) and the City of Los Angeles Municipal Code’s Noise Ordinance (Noise Ordinance) include local noise provisions applicable to the proposed project. The L.A. CEQA Thresholds Guide (City of Los Angeles, 2006) identifies guidelines for evaluating construction and operational noise levels in accordance with the provisions of the City’s Noise Element and Noise Ordinance.

The Noise Element applies to the City of Los Angeles as a whole and provides goals, policies, and implementation programs to minimize exposure to excessive noise sources and to identify new significant potential noise sources (City of Los Angeles, 1999). The Noise Element summarizes the major existing noise sources and associated noise contours in the city which include automotive vehicles, rail systems, and aircraft and airport facilities (City of Los Angeles, 1999). Generally, the goals and policies of the Noise Element reflect broad policy aims to establish compatible adjacent land uses that minimize new noise conflicts and protect sensitive land uses with appropriate noise emission and standards. Therefore, the Noise Element guides noise management within the City of Los Angeles. The Noise Element is implemented through Section 111.00 (Noise Regulation) of the City of Los Angeles Municipal Code (LAMC).

The Noise Regulation ordinances contained in Section 111.00 of the LAMC provide minimum ambient noise levels (LAMC 111.03) relative to City land use zone designations and specify requirements for special noise sources such as construction noise (LAMC 112.03). The proposed project is located entirely within the City’s
Heavy Industrial (M3) base zone and the presumed ambient noise level in this zone is 65 dBA in the daytime and nighttime.

As described in LAMC 112.03, noise resulting from construction is regulated by LMAC 41.40. Section 41.40 of the LAMC addresses when noise due to construction and excavation work is prohibited. Specifically, LAMC 41.40.a states the following:

No person shall, between the hours of 9:00 P.M. and 7:00 A.M. of the following day, perform any construction or repair work of any kind upon, or any excavating for, any building or structure, where any of the foregoing entails the use of any power driven drill, riveting machine excavator or any other machine, tool, device or equipment which makes loud noises to the disturbance of persons occupying sleeping quarters in any dwelling hotel or apartment or other place of residence. In addition, the operation, repair or servicing of construction equipment and the job-site delivering of construction materials in such areas shall be prohibited during the hours herein specified (City of Los Angeles, 2013).

LMAC 41.40.b provides exemptions for construction and excavation work within any land use district within the City that is zoned for manufacturing and industrial use. Specifically, LAMC 41.40.b includes the following statement:

The provisions of this section [LMAC 41.40] shall not in any event apply to construction, repair or excavation work done within any district zoned for manufacturing or industrial uses under the provisions of Chapter I of this Code (City of Los Angeles, 2013).

In accordance with LMAC 41.40.b, construction of the proposed project is exempt from Noise Regulation ordinances contained in Section 111.00 of the LAMC because the proposed project site is located entirely within the City’s Heavy Industrial (M3) base zone. Therefore, construction of the proposed project would not exceed any established standard in the City’s Noise Regulation ordinances and would have a less than significant impact.

Even though the proposed project is exempt from the limitations in LMAC 41.40 the project anticipates voluntarily limiting noisy construction activities to the hours of 7 a.m and 9 p.m. to the extent feasible.

Section 111.00 of the LAMC does not identify an applicable standard or limit for noise sources located within an industrial area. As the proposed project is replacing a similar existing facility, operation of the proposed project is expected to be consistent with the City’s Heavy Manufacturing land use designation and Heavy Industrial (M3) base zone.

b) Would the project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

Significance Threshold: A significant impact may occur if the project were to expose persons to or generate excessive groundborne vibration or groundborne noise levels.

Some activities associated with construction of the proposed project, such as pile driving during foundation construction and operation of rollers during paving, may result in perceptible off-site vibrations. However, these vibrations would be temporary, limited to daytime periods, and would attenuate with distance from the proposed project site. The nearest sensitive receptor to the site is the multi-family residential area of Rio Vista Village which is located approximately 1,500 feet to the east. The Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights are located approximately 2,100 feet east of the site.
Given the substantial distance to these sensitive receptors, construction of the proposed project would not expose people to excessive groundborne vibrations or groundborne noise levels. Operation of the proposed project would not introduce new sources of vibration or ground-borne noise to the project site or otherwise expose persons to such impacts. Therefore, construction and operation of the proposed project would have a less than significant impact in relation to groundborne vibration or groundborne noise.

c) Would the project result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

Significance Threshold: A significant impact may occur if the project were to substantially and permanently cause the ambient noise level measured at the property line of affected uses to increase by 3 A-weighted decibels (dBA) in community noise equivalent levels [CNEL] to or within the "normally unacceptable" or "clearly unacceptable" category (see Table 7), or any 5 dBA or greater noise increase.

Table 7. Land Use Compatibility Guidelines (CNEL, dBA)

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Normally Acceptable</th>
<th>Conditionally Acceptable</th>
<th>Normally Unacceptable</th>
<th>Clearly Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family, Duplex, Mobile Homes</td>
<td>50-60</td>
<td>55-70</td>
<td>70-75</td>
<td>Above 70</td>
</tr>
<tr>
<td>Multi-Family Homes</td>
<td>05-65</td>
<td>60-70</td>
<td>70-75</td>
<td>Above 70</td>
</tr>
<tr>
<td>School, Libraries, Churches, Hospitals, Nursing Homes</td>
<td>50-70</td>
<td>60-70</td>
<td>70-80</td>
<td>Above 80</td>
</tr>
<tr>
<td>Transient Lodging – Motels, Hotels</td>
<td>50-65</td>
<td>60-70</td>
<td>70-80</td>
<td>Above 80</td>
</tr>
<tr>
<td>Auditoriums, Concert Halls, Amphitheaters</td>
<td>-</td>
<td>50-70</td>
<td>-</td>
<td>Above 65</td>
</tr>
<tr>
<td>Sports Arena, Outdoor Spectator Sports</td>
<td>-</td>
<td>50-75</td>
<td>-</td>
<td>Above 70</td>
</tr>
<tr>
<td>Playgrounds, Neighborhood Parks</td>
<td>50-70</td>
<td>-</td>
<td>67-75</td>
<td>Above 72</td>
</tr>
<tr>
<td>Golf Courses, Riding Stables, Water Recreation, Cemeteries</td>
<td>50-75</td>
<td>-</td>
<td>70-80</td>
<td>Above 80</td>
</tr>
<tr>
<td>Office Buildings, Business and Professional Commercial</td>
<td>50-70</td>
<td>67-77</td>
<td>Above 75</td>
<td>-</td>
</tr>
<tr>
<td>Industrial Manufacturing, Utilities, Agriculture</td>
<td>50-75</td>
<td>70-80</td>
<td>Above 75</td>
<td>-</td>
</tr>
</tbody>
</table>

Normally Acceptable: Specified land use is satisfactory, based on the assumption that any buildings involved are normally conventional construction without any special noise insulation requirements.

Conditionally Acceptable: New construction of development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction but with closed windows and fresh air supply systems or are conditioning will normally suffice.

Normally Unacceptable: New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Clearly Unacceptable: New construction or development should generally not be undertaken.

Source: California Department of Health Services

It is unclear if the 5 dBA increase threshold was to be evaluated in terms of the 24 hour average CNEL or average hourly ambient sound levels. For the purposes of this assessment, it is presumed that the 5 dBA increase was to be evaluated against the average hourly ambient sound levels. The presumed minimum ambient sound level for land use zone designations in the City, as provided in LAMC 111.03, are shown in Table 8. As described in LAMC 111.03, the presumed ambient noise level of the quieter zone shall be used at the boundary line between two zones. The proposed project is located entirely within the City’s Heavy Industrial (M3) base zone and the presumed ambient noise level is 65 dBA. No sensitive receptors have been identified within the boundary of the proposed project site.
The nearest noise sensitive receptor to the site is the multi-family residential area of Rio Vista Village which is located approximately 1,500 feet to the east. Rio Vista Village is located within a C2 land use zone which has a presumed ambient sound level of 60 dBA during the daytime and 55 dBA during the nighttime. The Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights are both located approximately 2,100 feet east of the site. The Carmen Lomas Garza Primary Center School is located within a C2 land use zone which has a presumed ambient sound level of 60 dBA during the daytime and 55 dBA during the nighttime. The multi-family residential area of Boyle Heights (RD land use zone) has a presumed ambient level of 50 dBA during the daytime and 40 dBA during the nighttime.

The existing plant has been in operation since the 1940’s and is utilizing older equipment which would be removed and replaced as part of the proposed project. The proposed project would utilize all new and modern equipment and the trend for such equipment has been to increase efficiency while decreasing sound emissions. While detailed acoustical specifications for the proposed equipment are not yet available, it is expected that, consistent with typical OSHA guidelines, individual pieces of equipment would be procured to achieve 85 dBA or less at a distance of three feet from the piece of equipment. This sound level would dissipate with distance as a result of atmospheric attenuation, geometric spreading and intervening structures.

It is anticipated that the project would be designed and operated to limit the potential increase in the overall existing CNEL at the sensitive receptors as a result of project operations to 3 dBA and would not cause the existing CNEL to encroach on the “normally unacceptable or “clearly unacceptable” category at the noise sensitive receptors. Therefore, the proposed project would result in a less than significant impact on permanent ambient noise levels in the project vicinity.

Given the lack of information on the existing sound level (CNEL or otherwise) at the project site and the nearby sensitive receptors, and the lack of information on the proposed equipment sound emissions, a more robust analysis of the anticipated project sound levels and existing levels at nearby sensitive receptors would be conducted as detailed design progresses to ensure the project procures equipment consistent with regulatory requirements.

d) Would the project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Significance Threshold: A significant impact may occur if the proposed project were to create a substantial increase in the ambient noise levels that conflicts with the noise conditions allowed in the City’s Noise Ordinance.

Table 8. City of Los Angeles Municipal Code Noise Regulations: Presumed Ambient Noise Level (dBA)

<table>
<thead>
<tr>
<th>Land Use Zone</th>
<th>Presumed Ambient Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>A1, A2, RA, RE, RS, RD, RW1, RW2, R1, R2, R3, R4, and R5</td>
<td>50</td>
</tr>
<tr>
<td>P, PB, CR, C1, C1.5, C2, C4, C5, and CM</td>
<td>60</td>
</tr>
<tr>
<td>M1, MR1, and MR2</td>
<td>60</td>
</tr>
<tr>
<td>M2 and M3</td>
<td>65</td>
</tr>
</tbody>
</table>

Source: City of Los Angeles, 2013
Notes:
1. Daytime levels are to be used from 7:00 a.m. to 10:00 p.m. and nighttime levels from 10:00 p.m. to 7:00 a.m.
2. Where the ambient noise level is less than the presumed ambient noise level designated in this section, the presumed ambient noise level in this section shall be deemed to be the minimum ambient noise level for purposes of this chapter.
For projects where construction activities occur further than 500 feet from a noise sensitive use and construction would not occur between the hours of 9:00 p.m. and 7:00 a.m. Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday, there would normally be no significant impact from construction. A project would normally have a significant impact on noise levels from construction if:

- Construction activities lasting more than one day would exceed existing ambient exterior noise levels by 10 dBA or more at a noise sensitive use;
- Construction activities lasting more than 10 days in a three month period would exceed existing ambient exterior noise levels by 5 dBA or more at a noise sensitive use; or
- Construction activities would exceed the ambient noise level by 5 dBA at a noise sensitive use between the hours of 9:00 p.m. and 7:00 a.m. Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday, or at any time on Sunday.

Construction activities are the only temporary or periodic activities associated with the proposed project that emit noise. The nearest sensitive receptor to the site is the multi-family residential area of Rio Vista Village which is located approximately 1,500 feet to the east. The Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights are located approximately 2,100 feet east of the site. This is a substantial setback in comparison to the 500 feet distance referenced in the L.A. CEQA Thresholds Guide. While construction of the proposed project would occur between the hours of 7:00 a.m. and 9:00 p.m., the proposed project would utilize construction equipment such as pile drivers which are typically noisy and therefore further consideration was considered to be prudent.

Heavy equipment used during construction would also include equipment such as excavators, backhoes, loaders, bulldozers, cranes, graders, rollers, pavers, pile drivers, drill rigs, forklifts, dump trucks, flatbed trucks, water trucks, and dump trucks. Construction of the proposed project is anticipated to occur over a period of approximately 22 months, within which production pile driving activities are anticipated to occur over a period of 30 days. Therefore, the potential noise impacts in the 30 day period when pile driving would take place has been assessed separately from the other periods of construction.

Outside of pile driving, the loudest pieces of heavy equipment operated at the site would consist of excavators, cranes, graders and dozers. Such equipment typically emit noise in the range of 80 to 85 dBA at a distance of 50 feet. Assuming that four pieces of heavy equipment are operating simultaneously between 50 and 200 feet of each other, the average sound level would be 68 dBA at 400 feet from the nearest piece of equipment. Based simply on the fact that noise attenuates with distance, and without considering other noise attenuating factors such as atmospheric absorption, ground effects and intervening structures, it is anticipated that average construction sound levels at the Rio Vista Village (1,500 feet away) would be approximately 57 dBA. Average construction sound levels at the Carmen Lomas Garza Primary Center School and the multi-family residential area of Boyle Heights (2,100 feet away) would be approximately 54 dBA.

The L.A. CEQA Thresholds Guide states that a project would normally have a significant impact on noise levels from construction if construction activities lasting more than 10 days in a 3 month period would exceed existing ambient exterior noise levels by 5 dBA or more at a noise sensitive use*. The presumed ambient level provided by LAMC 111.03 for the Carmen Lomas Garza Primary Center school and Rio Vista Village (C2 land use zone) is 60 dBA during the daytime and 55 dBA during the nighttime.

*The basis for the 5 dBA increase is not defined in terms of metrics (Leq, CNEL, etc.) nor duration (instantaneous, hourly, daily, long term average). This analysis is based on evaluating a long term average over the presumed ambient noise levels.
The multi-family residential area of Boyle Heights (RD land use zone) has a presumed ambient level of 50 dBA during the daytime and 40 dBA during the nighttime. Because construction would not occur during the nighttime, the anticipated sound levels as a result of average construction activities were only compared to the presumed ambient level during the daytime. The predicted construction noise level of 54 dBA for the proposed project is anticipated to be less than the presumed ambient daytime noise level of 60 dBA at the Carmen Lomas Garza Primary Center School and the Rio Vista Village. The predicted average construction noise level of 54 dBA for the proposed project would not exceed the presumed daytime ambient level of 50 dBA at the multi-family residential area of Boyle Heights by more than 5 dBA. Therefore, the proposed project would have less than significant impacts during the typical construction period for the proposed project.

During the approximately 30 day period when pile driving is anticipated to occur, the pile driving activities would be the only construction activities conducted. Impact pile drivers with dampers would be used to drive the piles and are predicted to generate sound levels of approximately 95 dBA at a distance of 50 feet. At Rio Vista Village which is located approximately 1,500 feet from the site, the sound levels from pile driving activities would be approximately 62 to 67 dBA (similar in sound level to a normal conversation at 3 feet). At the school and Boyle Heights which are located approximately 2,100 feet away, sound levels from pile driving would range from approximately 58 to 63 dBA. The predicted sound level from pile driving at Rio Vista Village (using the upper value in the range presented) and Boyle Heights exceed the presumed daytime ambient levels by more than 5 dBA for 10 days within a three month period and would have a significant impact on noise levels. The predicted sound level from pile driving would not have a significant impact on the Carmen Lomas Garza Primary Center School.

Measures for mitigating significant noise impacts during pile driving are detailed in the mitigation measures section below.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

Significance Threshold: A significant impact may occur if the proposed project would expose people residing or working in the project area to excessive noise levels due to the proposed project site being located within an airport land use plan or within two miles of a public airport where such a plan has not been adopted.

The project site is located approximately 9 miles northeast of Hawthorne Municipal Airport, 14 miles southeast of Burbank Airport, 10 miles northeast of Los Angeles International Airport, 12 miles southwest of El Monte Airport, and 11 miles east of Santa Monica Airport. Therefore, construction and operation of the proposed project would not expose people residing or working in the proposed project area to excessive noise levels due to the proposed project site being located within an airport land use plan or within two miles of a public airport where such a plan has not been adopted. No impact is anticipated.

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

Significance Threshold: A significant impact may occur if the proposed project would expose people residing or working in the project area to excessive noise levels due to the vicinity to a private airstrip.

No private airstrips are located within the vicinity of the proposed project area. Therefore, there would be no impact during construction and operation of the proposed project.
In summary, the proposed project would have the following impact:

<table>
<thead>
<tr>
<th>Impact Type</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

To minimize potentially significant temporary noise impacts associated with construction activities, specifically pile driving, the following mitigation measures would be implemented:

NOI-1 Impact pile driving activities, where the hammer impacting the piles occurs, is anticipated to occur for approximately 3 to 4 hours during the 8:00 a.m. to 4:00 p.m. period, Monday through Friday. Impact pile driving activities shall only occur between the hours of 8:00 a.m. and 4:00 p.m., Monday through Friday.
Prior to the initiation of construction activities, including pile driving, the contractor shall prepare a noise control plan to document their understanding and commitment to comply with applicable construction noise thresholds. The noise control plan shall include the following:

- A noise monitoring plan during the test piling to evaluate if dampening devices are performing as expected and identify additional noise minimization measures, including but not limited to an acoustical shroud, if necessary, to ensure potential pile driving noise concerns are addressed. An acoustical shroud would be expected to reduce noise from impact pile driving by up to approximately 15 dBA and therefore would be capable of reducing noise to less than significant levels at the multi-family residential areas of Rio Vista Village and Boyle Heights.

- Establish a telephone number for use by the public to report any significant undesirable noise conditions associated with the construction of the project. If the telephone is not staffed 24 hours per day, the project owner shall include an automatic answering feature, with date and time stamp recording, to answer calls when the phone is unattended. This telephone number shall be posted at the proposed project site during construction in a manner visible to passersby. This telephone number shall be maintained until the project has been operational for at least 1 year.

- Throughout the construction of the project, the City or authorized representative shall document, investigate, evaluate, and attempt to resolve all legitimate project-related noise complaints. The City or the authorized representative shall attempt to contact the person(s) making the noise complaint within 24 hours and conduct an investigation in an attempt to determine if the proposed project is the source of noise related to the complaint.
XIII. Population and Housing

Environmental Setting
The proposed project site is situated in a heavy industrial area and is currently used for HMA production. The nearest residential area to the proposed project site is the multi-family residential areas of Rio Vista Village and Boyle Heights which are located approximately 1,500 and 2,100 feet to the east, respectively.

Impact Assessment

a) Would the project induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

Significance Threshold: A significant impact may occur if the proposed project induced substantial population and housing growth through new development in undeveloped areas or by introducing unplanned infrastructure that was not previously evaluated in the adopted community plan or general plan.

The proposed project would not promote population growth either directly or indirectly. Demolition of the existing asphalt plant and construction of a new, modern plant would require a maximum workforce of approximately 25 personnel. It is anticipated that local personnel would be used and that these activities would not promote population growth. The new, modern plant would maintain the same workforce of 12 personnel and therefore operation of the proposed project would not promote population growth and no impacts are anticipated.

b) Would the project displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

Significance Threshold: A significant impact may occur if the proposed project displaced substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere.

The proposed project would not displace existing housing nor necessitate the construction of replacement housing and therefore no impact is anticipated.

c) Would the project displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Significance Threshold: See Section XIII(b) above.

The proposed project would not displace substantial numbers of people nor necessitate the construction of replacement housing and therefore no impact is anticipated.
In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Impact</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
XIV. Public Services

Environmental Setting

The proposed project would be constructed on approximately 1.9 acres of land that is the site of the existing Asphalt Plant No. 1. The proposed project would also continue to utilize the 1-acre leased property to the south. While production at the plant would increase with the proposed project, the same number of personnel (12) would continue to operate the facility.

The closest fire station that serves the proposed project site is the Los Angeles Fire Department’s local Fire Station No. 17, located at 1601 S. Santa Fe Avenue, approximately 0.2 mile driving distance from the proposed project site (City of Los Angeles Fire Department, 2015). The proposed project site and surrounding area is served by the Los Angeles Police Department’s Newton Community Police Station, located at 3400 S Central Avenue, approximately 3 miles driving distance from the proposed project site (Los Angeles Police Department, 2015).

The proposed project site and surrounding area is served by the Los Angeles Unified School District, and the closest school is the Carmen Lomas Garza Primary Center, which is located approximately 0.4 miles to the east. The closest park or recreation facility to the proposed project site is the Lou Costello Recreation Center, located at 3141 E. Olympic Boulevard, approximately 1 mile southeast of the site.

Impact Assessment

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of these public services:

ai) Fire protection?

Significance Threshold: A significant impact may occur if the project required the addition of a new fire station or the expansion, consolidation or relocation of an existing facility to maintain service.

The proposed project would replace an aged, existing asphalt plant with a modernized facility that would occupy the same property, and utilize the same number of personnel for operation. Production would increase with the new modernized production technology due to an increase in automation, and new machinery and methods would comply with existing health and safety regulations, which is expected to increase safety of workers compared to the machinery and methods used in the existing facility, which was constructed in the 1940s. As a result, there would be no change in the expected need for fire protection facilities or services. Construction of the new facility would be temporary, and so would not require an expansion of fire protection services. Therefore, construction and operation of the proposed project would not require the addition of a new fire station or the expansion, consolidation or relocation of an existing facility to maintain services and no impact would occur.

aii) Police protection?

Significance Threshold: A significant impact may occur if the proposed project were to result in an increase in demand for police services that would exceed the capacity of the police department responsible for serving the site.
Because the proposed project would not result in a change to the overall use of the proposed project site, or an increase in the number of employees present during operation, no change in the demand for police services is expected. The temporary activities occurring during construction of the proposed project would not result in an increase in the demand for police services. As a result, construction and operation of the proposed project would not result in an increase in demand for police services that would exceed the capacity of the police department responsible for serving the site and no impact would occur.

aiii) Schools?

Significance Threshold: A significant impact may occur if the proposed project included substantial employment or population growth that could generate demand for school facilities that exceeded the capacity of the school district responsible for serving the proposed project site.

The proposed project would maintain the same number of employees during operation as is employed by the existing asphalt plant, therefore no population growth that could generate demand for additional school facilities would result from operation of the project. Construction activities would be temporary, and would also not be expected to result in population growth or a demand for additional school facilities. As a result, construction and operation of the proposed project would not result in substantial employment or population growth that could generate demand for school facilities that exceeded the capacity of the school district responsible for serving the proposed project site and no impact would occur.

aiv) Parks?

Significance Threshold: A significant impact may occur if the recreation and park services available could not accommodate the population increase resulting from the implementation of the proposed project and new or physically altered facilities were needed.

The proposed project would not cause population growth because the same number of employees would operate the new facility. Temporary construction activities would also not result in population growth. Because of this, the proposed project would not result in a population increase during operation or construction that could not be accommodated by existing recreation and park services, and no impact would occur.

av) Other public facilities

Significance Threshold: A significant impact would occur if the project results in the need for new or altered public facilities, such as libraries, due to population or housing growth.

Because population and housing growth would not result from the proposed project during construction or operation, there would not be a need for new or altered public facilities, such as libraries, and no impact would occur.

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of these public services:
<table>
<thead>
<tr>
<th>Category</th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>ii) Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iii) Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iv) Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>v) Other public facilities</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Mitigation Measures

No mitigation is necessary.
XV. Recreation

Environmental Setting
The proposed project would be constructed on the site of the existing asphalt plant, and the same number of personnel would be maintained to operate the facility, therefore no increase in population growth or housing is anticipated as a result of the proposed project. The asphalt plant requires 12 personnel for operation. The proposed project site is located in the City of Los Angeles General Plan Central City North Community planning area, within a land use area designated as “heavy industrial” (City of Los Angeles, 2000), therefore there are few parks in the vicinity. The closest park or recreation facility to the proposed project site is the Lou Costello Recreation Center, located at 3141 E. Olympic Boulevard, approximately 1 mile southeast of the site.

Impact Assessment

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

Significance Threshold: A significant impact may occur if the proposed project included substantial employment or population growth that generated demand for public park facilities that exceed the capacity of existing parks or that substantially affected the level or service of existing park facilities.

The proposed project would replace an existing asphalt plant with a modernized facility that would occupy the same property and be operated by the same number of personnel. Construction of the proposed project would be temporary, and therefore would not contribute to local population growth or housing demand. Therefore, construction and operation of the proposed project would not include substantial employment or population growth that would exceed the capacity of existing parks or affect the level of service of existing park facilities and there would be no impact on recreational resources.

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Significance Threshold: A significant impact may occur if the proposed project would require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment.

The proposed project does not include recreational facilities or require the construction or expansion of recreational facilities. Construction of the proposed project would be temporary, and therefore would not cause a change in the local need for recreational facilities. As a result, construction and operation of the proposed project would not result in an adverse physical effect on the environment due to recreational facilities and no impact would occur.
In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? ☐ ☐ ☐ ☒

b) Include recreational facilities or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment? ☐ ☐ ☐ ☒

Mitigation Measures

No mitigation is necessary.
XVI. Transportation/Traffic

Environmental Setting

Primary regional access to the proposed project site is provided by the I-10, I-5, and State Route (SR) 60 freeways. The proposed project site is less than 0.25 mile south of I-10. Major arterials that serve the proposed project site include E. Olympic Boulevard, S. Santa Fe Avenue, and Soto Avenue. The primary roadways serving the site are described below.

- **I-10 (the Santa Monica Freeway)** runs east-west and extends from the City of Santa Monica eastward past downtown Los Angeles. The freeway provides five lanes in each direction west of the I-10/SR-60 junction, three lanes in each direction between the I-10/SR-60 and I-10/I-5 junctions, and six lanes in the east direction west of the I-10/I-5 junction. I-10 carries an average of 288,000 vehicles/day near S. Santa Fe Avenue (Caltrans, 2015). The I-10 westbound on- and off-ramps closest to the proposed project site are located at 8th Street and the I-10 eastbound on- and off-ramps nearest to the proposed project site are located at Porter Street. An eastbound off-ramp is also located at S. Santa Fe Avenue.

- **I-5 (the Golden State Highway/Santa Ana Freeway)** runs north-south through the Los Angeles area from north of the San Fernando Valley to south of Santa Ana. Near its junction with SR-60, I-5 has five lanes in each direction and carries an average of 257,000 vehicles/day (Caltrans, 2015).

- **SR-60 (the Pomona Freeway)** runs east-west and extends from the I-5/I-10 interchange eastward past Pomona. Near the study area, SR-60 provides five lanes in each direction plus auxiliary lanes. The interchange closest to the proposed project site is located at Soto Street.

- **E. Olympic Boulevard** is an east-west roadway that runs along the north side of the proposed project site. E. Olympic Boulevard has two travel lanes in each direction through the study area. Dedicated left-turn lanes are provided at most intersections. Access to the proposed project site is provided from an existing driveway on E. Olympic Boulevard, approximately 350 feet east of the intersection of E. Olympic Boulevard and S. Santa Fe Avenue.

- **S. Santa Fe Avenue** is a north-south two-lane roadway located immediately west of the proposed project site.

- **Porter Street** is an east-west two-lane local street (less than a 0.5 mile in length) between Mateo Street on the west and warehouses and the railroad tracks on the east. I-10 eastbound on- and off-ramps are located at Porter Street and are the closest I-10 freeways ramps to the proposed project site.

- **8th Street**, within the vicinity of the proposed project site, is a two-lane road located north of I-10. 8th Street terminates at the railroad tracks on the east and provides access to an industrial road running north-south along the west side of the railroad tracks. The I-10 westbound on- and off-ramps are located at 8th Street.

- **Soto Street** is a north-south roadway with two travel lanes in each direction near the proposed project site. Dedicated left-turn lanes are provided at most intersections. Between 7th Street and 8th Street, Soto Street provides access to SR-60, I-5, and I-10 via several on- and off-ramps.
The majority of vehicles currently access the proposed project site via S. Santa Fe Avenue, Porter Street and the frontage road that runs parallel to E. Olympic Boulevard. It is estimated that 90 percent of vehicles currently accessing the site use this route; the remaining 10 percent use E. Olympic Boulevard and the frontage road. A driveway, approximately 400 feet west of the proposed project site, connects the frontage road and E. Olympic Boulevard.

Impact Assessment

The following traffic impact assessment is based on the findings of the Traffic Impact Analysis provided as Appendix B. Proposed project activities during construction and operation were evaluated within the context of surrounding transportation facilities to determine whether the proposed project may result in changes that will affect those facilities. The potential proposed project traffic impacts for construction and operations were evaluated by determining the net increase in proposed project-related traffic over existing conditions (which includes operation of the existing plant). Peak construction of the proposed project would occur during 2016 and the proposed project would be operational in 2018. The traffic evaluation also included an analysis of a future horizon year, which was determined to be 2040.

The following seven intersections near the proposed project site were evaluated for morning and afternoon peak hours for future (years 2016, 2018, and 2040) traffic conditions with the proposed project:

- I-10 westbound ramps and 8th Street (unsignalized)
- I-10 eastbound ramps and Porter Street (unsignalized)
- S. Santa Fe Avenue and 8th Street (signalized)
- S. Santa Fe Avenue and Porter Street (signalized)
- S. Santa Fe Avenue and E. Olympic Boulevard (signalized)
- I-5/SR-60 northbound off-ramp and Soto Street (signalized)
- E. Olympic Boulevard and Soto Street (signalized)

a) Would the project conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

Significance Threshold: The proposed project would have a significant traffic impact if the traffic volume to intersection capacity ratio is increased, as follows:

<table>
<thead>
<tr>
<th>Intersection Condition with Project Traffic</th>
<th>Project-Related Increase in V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS Volume/Capacity Ratio (V/C)</td>
<td></td>
</tr>
<tr>
<td>C >0.701 – 0.800</td>
<td>Equal to or greater than 0.040</td>
</tr>
<tr>
<td>D 0.801 – 0.900</td>
<td>Equal to or greater than 0.020</td>
</tr>
<tr>
<td>E, F > 0.900</td>
<td>Equal to or greater than 0.010</td>
</tr>
</tbody>
</table>

\[a\] including project, ambient and related project growth.

\[b\] Source: LADOT, 2012.
The traffic evaluation determined that during the peak construction period (anticipated to occur from approximately October 2016 through November 2016), the proposed project would generate 135 daily trips and 29 peak hour trips. However, because the existing plant operations would cease during construction, the net change in traffic during construction would be less than existing conditions. There would 123 fewer daily trips and 11 fewer peak hour trips during construction, and therefore no construction-related traffic effects to the surrounding roadways and intersections. Based on this determination, no quantitative level of service calculations were completed for the 2016 + Project Construction conditions. Impacts during construction would be less than significant.

The potential proposed project traffic impacts for operations were also evaluated by determining the net increase in proposed project-related traffic. Proposed project trips were estimated based on an average day and a maximum day of production. The proposed project would result in an average net increase of 34 peak hour trips and a maximum net increase of 76 peak hour trips. The maximum day of operations was analyzed first, as the most conservative case.

As part of the analysis, it was assumed that approximately 25 percent of the operations-related trucks (for a maximum day of operations) would be directed to exit the site using the frontage road and driveways which connect to E. Olympic Boulevard (approximately 10 percent of the operations-related trucks currently exit the site via this route). Approximately 75 percent of operations-related trucks would access the site via the frontage road, Porter Street and S. Santa Fe Avenue. This truck distribution pattern would be adhered to as an environmental commitment for the project, as part of the Operation Management Plan for the plant.

The traffic analysis concludes that, based on the City’s thresholds, there would be no significant impact to any of the seven study intersections during proposed project operations. The level of service at the study intersections would not change with the addition of proposed project traffic during either 2018 (when the proposed project would commence operation) or 2040 conditions and the traffic impact thresholds (a change in volume capacity) would not be exceeded at any of the study intersections with the proposed project-added traffic during a maximum day of operations. Therefore, the traffic impacts during operation would be less than significant.

b) Would the project conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

Significance Threshold: A significant impact may occur if the proposed project would conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.

As described above, based on the traffic analysis prepared for the proposed project, the level of service at the study intersections would not change with the addition of proposed project traffic during either 2018 or 2040 conditions and the City’s traffic impact thresholds would not be exceeded at any of the study intersections. Likewise, the proposed project would not conflict with the Los Angeles County Congestion Management Program or any other standards established by the county congestion management agency (Los Angeles County Metropolitan Transportation Authority) for designated roads or highways. Impacts would be less than significant during both construction and operation.
c) Would the project result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

Significance Threshold: A significant impact may occur if the proposed project results in a change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks.

The proposed project involves replacement and modernization of an existing asphalt plant. The proposed project would not involve a change in air traffic patterns, including either an increase in traffic levels or a change in location that would result in substantial safety risks. There would be no impact to air traffic.

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Significance Threshold: A significant impact may occur if the proposed project substantially increased road hazards due to a design feature or incompatible uses.

The proposed project would not involve any physical changes to the access routes at or near the proposed project site during either construction or project operations. Access to the site will be provided from existing driveways and from the Porter Street/S. Santa Fe Avenue intersection. The proposed project site is located in an established industrial area and no change in land use is proposed. The proposed project would not be located next to incompatible land uses. Therefore, the proposed project would not increase hazards on area roadways due to a design feature or incompatible use. There would be no impact.

e) Would the project result in inadequate emergency access?

Significance Threshold: A significant impact may occur if the proposed project resulted in inadequate emergency access.

The proposed project would not involve any physical changes to the access routes at or near the project site during either construction or operation. Emergency access to the site would continue to be provided from the existing site driveways and emergency access would be maintained at all times. Therefore, the proposed project is not expected to affect emergency access or result in inadequate emergency access. There would be no impact.

f) Would the project conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

Significance Threshold: A significant impact may occur if the proposed project were to conflict with adopted policies, plans, or programs supporting alternative transportation.

As an industrial development, the proposed project would not be expected to conflict with adopted policies, plans, or programs supporting alternative transportation, as there will be no changes related to alternative transportation. Construction and operation of the proposed project would occur entirely onsite and would not affect transit, bicycle facilities or other forms of alternative transportation. No realignment of streets is proposed, and no street closures or changes in circulation patterns would occur. Therefore, no impacts to adopted policies, plans, or programs supporting alternative transportation would occur.
In summary, the proposed project would have the following impacts:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) Exceed the capacity of the existing circulation system, based on an applicable measure of effectiveness (as designated in a general plan policy, ordinance, etc.), taking into account all relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

e) Result in inadequate emergency access?

f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

Mitigation Measures
No mitigation is required
XVII. Utilities and Service Systems

Environmental Setting
The existing asphalt plant receives potable water from the LADWP. Wastewater from the proposed project site and surrounding area flows to the Hyperion Treatment Plant, operated by LA Sanitation, via the sewer system. As part of the proposed project, the existing water service lines at the project site would be abandoned, and new service lines would be installed and connected to the LADWP water main located along the frontage road. Upgrades and reconstruction of sanitary sewer lines would be required.

The City’s Bureau of Sanitation and private refuse companies manage the collection, transfer, and disposal of municipal solid waste. Regular waste (garbage) that does not contain hazardous waste is disposed in municipal solid waste landfills, and waste containing hazardous materials is disposed in accordance with applicable regulations, including disposal of properly certified landfill facilities within the state of California.

Impact Assessment

a) Would the project exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

Significance Threshold: A significant impact would occur if the proposed project discharges wastewater, which would exceed the regulatory limits established by the LARWQCB.

During construction, BMPs would be implemented as described in the proposed project’s SWPPP, which would be in compliance with the latest National Pollutant Discharge Elimination System Stormwater Regulations (see Section IX., Hydrology and Water Quality). With the implementation of construction BMPs, stormwater discharged from the proposed project site during construction is not expected to exceed LARWQCB limits, and the impact would be less than significant.

As discussed in Section IX, Hydrology and Water Quality, the proposed project would implement LID design standards, such as swales along the perimeter of the Asphalt Plant No.1 property and drywells, to remove pollutants from runoff and stormwater. As a result, during operation the proposed project would discharge stormwater that would be within LARWQCB limits, and the impact would be less than significant.

Wastewater discharge corresponds to water use. The existing plant currently uses approximately 300 gallons of potable water per day and it is anticipated that the proposed project would use approximately 500 gallons per day of water. The existing plant currently uses water for dust suppression on the open aggregate storage piles, equipment washing and maintenance, and in the administration building. While the proposed project would increase asphalt production by more than three times (200,000 to 700,000 tons per annum), water use would increase by approximately 40 percent. This is attributed primarily to storage of aggregate within silos which eliminates water use for dust suppression and helps retain moisture in the aggregate, reducing the amount of water needed for the aggregate conveyor systems. The tree boxes would be planted with drought-tolerant landscaping to minimize water required for landscaping. Because water use would increase as a result of the proposed project, the volume of wastewater discharged to the sewer system would also increase. However, the composition of wastewater is not anticipated to change as a result of the proposed project. Upgrades and reconstruction of sanitary sewer lines would be required as part of the proposed project. Wastewater discharged to the sewer system would continue to flow to the Hyperion Treatment Plant, and it is not anticipated that the proposed project would adversely affect the plant’s ability to meet treatment and discharge requirements. Therefore, the impact would be less than significant.

b) Would the project require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
Significance Threshold: A significant impact may occur if the proposed project resulted in the need for new construction or expansion of water or wastewater treatment facilities that could result in an adverse environmental effect that could not be mitigated.

The proposed project would increase the amount of water used and wastewater generated. However, this increase would not necessitate the expansion of an existing treatment facility or construction of a new facility and therefore the proposed project would have a less than significant impact.

c) Would the project require or result in the construction of new storm water facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Significance Threshold: A significant impact may occur if the volume of stormwater runoff from the proposed project increases to a level exceeding the capacity of the storm drain system serving the proposed project site.

As discussed in Section IX, Hydrology and Water Quality, the Proposed Project would implement Low Impact Development (LID) design standards, such as swales along the perimeter of the Asphalt Plant No.1 property and drywells, to remove pollutants from stormwater while also reducing stormwater flow through infiltration. As a result, the proposed project would discharge a smaller volume of stormwater runoff during low flow as compared to current conditions, and would have a beneficial effect on drainage. The impact of the proposed project would be less than significant.

d) Would the project have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

Significance Threshold: A significant impact may occur if the proposed project’s water demands would exceed the existing water supplies that serve the site.

The LADWP provides potable water to the proposed project site. As described in Section XVII(b) above, the proposed project would result in an increase in water demand compared to the existing plant. The City has coordinated with LADWP regarding the need to upgrade the water lines to accommodate the proposed project. The existing water service lines at the proposed project site would be abandoned and new service lines would be installed and connected to the water main located along the frontage road. No new water entitlements or resources would be required for the proposed project, and therefore, the proposed project would have a less than significant impact.

e) Would the project result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

Significance Threshold: A significant impact may occur if the proposed project results in a determination by the wastewater treatment provider that serves or may serve the project that it has inadequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments.

Refer to Sections XVII.a and XVII.b above.

f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?

Significance Threshold: The management of solid waste in the City involves public and private refuse collection services as well as public and private operation of solid waste transfer, resource recovery, and disposal facilities. A significant impact would occur if the proposed project results in solid waste generation of five tons or more per week.
The City’s Bureau of Sanitation and private refuse companies manage the collection, transfer, and disposal of municipal solid waste. There are three types of disposal facilities within the state; Class III Landfills (Municipal Solid Waste Landfills), Unclassified (Inert) Landfills, and Transformation (waste to energy) Facilities. There are also a number of recycling facilities within the state.

Construction of the proposed project would generate various types of waste. Demolition debris would be generated by removal of the existing buildings, structures, and asphalt and concrete paving material. It is estimated that demolition would generate approximately 4,600 cubic yards (or 5,800 tons) of demolition material which would be recycled where the material is not hazardous (refer to Section VIII Hazards and Hazardous Materials of the IS for details). During construction of the plant buildings and structures, small quantities of construction waste would be generated. However, the quantities are anticipated to be small because of the use of prefabricated construction materials and manufacture of construction materials offsite. For example, several of the large pieces of equipment for the plant would be prefabricated and transported to the project site for assembly and concrete for final paving would be mixed offsite. Small quantities of solid waste would also be generated by construction personnel. Construction waste would be recycled and composed wherever possible, such that only a relatively small volume of solid waste would require disposal at a solid waste landfill within the state.

During operation of the proposed project, solid waste would be generated primarily by plant employees and visitors. Small quantities of solid waste such as worn equipment parts and occasional debris removed from the RAP piles would also be generated. Because the plant currently, and would continue to, employ 12 personnel, would generally maintain the same number of visitors, and would continue produce small quantities of solid waste such as worn equipment parts, the proposed project is not expected to increase the volume of solid waste generated at the site. Solid waste generated at the plant would continue to be recycled or composed wherever possible, and the remaining waste would be disposed of in a municipal solid waste landfill within the state.

Solid waste generated at the proposed project site would be transported and disposed of by permitted solid wastehaulers to regulated sites that have adequate capacity and are in compliance with all applicable regulations related to solid waste collection and disposal. According to the CalRecycle Solid Waste Information System (State of California, 2015), there are several permitted active landfills in the vicinity of the proposed project that could accommodate solid waste from the project site during construction and operation. The closest to the project site is Sunshine Canyon Landfill which is located in Sylmar, California, approximately 30 miles to the northwest. The landfill accepts construction and demolition debris, green materials, industrial, inert and mixed municipal solid waste and has an estimated closure date of 2037. Other solid waste landfills in the area include the Chiquita Canyon Sanitary Landfill and the Calabasas Sanitary Landfill which have estimated closure dates of 2019 and 2025, respectively.

Therefore, because there are landfills in the area with sufficient capacity to accommodate the proposed project’s solid waste disposal needs and the amount of solid waste generated during construction and operation of the proposed project would not exceed five tons per week, the impact would be less than significant.

\textit{g) Comply with federal, state, and local statutes and regulations related to solid waste?}

\textit{Significance Threshold: A significant impact may occur if the proposed project would generate solid waste that was in excess or was not disposed of in accordance with applicable regulations.}

The City of Los Angeles Solid Waste Management Policy Plan (SWMPP) is the long range solid waste management policy plan for the City. The objective of the SWMPP is to reduce at the source or recycle a minimum of 50 percent of the City’s waste and calls for the disposal of the remaining waste in local and possibly remote landfills. The SWMPP establishes citywide diversion objectives, including diversion of 75 percent by
2013. While the SWMPP is the long range solid waste management policy plan for the City, the Source Reduction and Recycling Element is the strategic action policy plan for diverting solid waste from landfills. The source reduction, recycling, composting, special waste, and public education goals are defined by specific programmatic elements including tasks, roles, responsibilities, and an implementation schedule. Guidance for, and implementation of, the solid waste diversion programs identified in the Source Reduction and Recycling Element are administered by the City of Los Angeles Department of Public Works, Bureau of Sanitation, Solid Resources Citywide Recycling Division.

The proposed project is integral to the City’s SWMPP and achieving the objective of recycling a minimum of 50 percent of the City’s waste. The existing plant is only capable of producing HMA with a RAP content of up to 7.5 percent. The proposed project would be capable of producing HMA with a RAP content of up to 50 percent.

As discussed above in Section XVII(f), construction and operation of the proposed project would generate solid waste. Consistent with the SWMPP, the proposed project would recycle a minimum of 50 percent of solid waste generated during construction and operation. Solid waste generated at the proposed project site which is not suitable for recycling or composting would be transported and disposed of by permitted solid wastehaulers to regulated landfill sites that have adequate capacity and are in compliance with all applicable regulations related to solid waste collection and disposal. Therefore, solid waste disposal during construction and operation of the proposed project would comply with federal, state, local statutes and regulations related to solid waste and the impacts are anticipated to be less than significant.

In summary, the proposed project would have the following impact:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water facilities or expansion of existing facilities, the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? ☐ ☐ ☒ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation Measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No mitigation necessary.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XVIII. Mandatory Findings of Significance

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

The proposed project would not degrade the quality of the environment. It would not have significant air quality or traffic impacts. Temporary noise impacts associated with construction activities will be less than significant with mitigation incorporated. No plant or animal species listed on any state or federal lists for endangered, threatened or special status species were identified onsite. There are no significant cultural resources located onsite. Demolition of the existing structures and buildings onsite during construction would not eliminate important examples of the major periods of California history or prehistory. Therefore, the proposed project would have a less than significant impact.

b) Does the project have impacts that are individually limited but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

The project represents a replacement and modernization within the existing project site limits. Additionally, no projects within the study area have been identified that would warrant a cumulatively considerable assessment, and no impact would occur.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Neither construction nor operation of the proposed project would have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly, therefore there impact would be less than significant.

In summary, the proposed project would have the following impact:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?
b) Does the project have impacts that are individually limited but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less than Significant with Mitigation Incorporated</th>
<th>Less-than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
Determination

Summary

The initial study concluded that the proposed project would result in no impacts and/or less than significant impacts on aesthetics, agriculture and forest resources, air quality, biological resources, cultural resources, geology and soils, greenhouse gas emissions, hazards and hazardous materials, hydrology/water quality, land use and planning, mineral resources, population and housing, public services, recreation, transportation/traffic, and utilities/service systems. The project shall have less than significant impacts on noise. Mitigation measures shall been incorporated in order to minimize the potentially significant temporary noise impacts associated with construction activities.

Recommended Environmental Documentation

On the basis of this initial evaluation:

I find that although the proposed project could have a significant effect on the environment, there would not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION should be adopted. I find that the proposed project could not have a significant effect on the environment, and a NEGATIVE DECLARATION should be adopted.

Prepared By:

Sarah Townsend
CEQA Initial Study Lead
CH2M Hill, Inc.

Approved By: Gary Lee Moore, P.E. ENV SP
City Engineer

By:

Maria Martin
Environmental Affairs Officer
Environmental Management Group
Preparation and Consultation

Preparers

<table>
<thead>
<tr>
<th>CH2M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason Reynolds, Project Manager</td>
<td></td>
</tr>
<tr>
<td>Sarah Townsend, CEQA Initial Study Lead</td>
<td></td>
</tr>
<tr>
<td>Kirsten Skadberg, CEQA Initial Study Contributor</td>
<td></td>
</tr>
<tr>
<td>Birgitta Ongawan, CEQA Initial Study Contributor</td>
<td></td>
</tr>
<tr>
<td>Hong Zhuang, Air Quality</td>
<td></td>
</tr>
<tr>
<td>Loren Bloomberg, Traffic</td>
<td></td>
</tr>
<tr>
<td>Lisa Valdez, Traffic</td>
<td></td>
</tr>
<tr>
<td>Sajeev Keecheril, Traffic</td>
<td></td>
</tr>
<tr>
<td>Mark Bastach, Noise</td>
<td></td>
</tr>
<tr>
<td>George Hsu, Water and hydrology</td>
<td></td>
</tr>
<tr>
<td>John Blasco, Contaminated Soils</td>
<td></td>
</tr>
</tbody>
</table>

Coordination and Consultation

<table>
<thead>
<tr>
<th>City of Los Angeles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Public Works, Bureau of Engineering</td>
<td></td>
</tr>
<tr>
<td>1149 S. Broadway</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90015</td>
<td></td>
</tr>
<tr>
<td>Reza Bagherzadeh, Project Manager and Sr. Environmental Engineer</td>
<td></td>
</tr>
<tr>
<td>Maria E. Martin, Environmental Affairs Officer</td>
<td></td>
</tr>
<tr>
<td>Hugh Lee, Chief Engineer</td>
<td></td>
</tr>
<tr>
<td>Paul Young, Architect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All American Asphalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PO BOX 2229</td>
<td></td>
</tr>
<tr>
<td>Corona, CA 92878</td>
<td></td>
</tr>
<tr>
<td>Danny Stinson</td>
<td></td>
</tr>
</tbody>
</table>
References

Air Resources Board (ARB). 2010. ARB Methods to Find the Cost-Effectiveness of Funding Air Quality Projects, Emission Factor Tables, Table 5.

California Department of Transportation (Caltrans). 2015. 2014 All Traffic Volumes on CSHD. Traffic Data Branch. Available at: http://traffic-counts.dot.ca.gov/2014all/

City of Los Angeles. 2012b. Low Impact Development (LID) Ordinance (Final Ordinance No. 181899) May 12.

County of Los Angeles. 2012c. The Greater Los Angeles County Open Space for Habitat and Recreation Plan.

City of Los Angeles. 2008. Climate LA

City of Los Angeles. 2007b. Los Angeles River Revitalization Master Plan.

City of Los Angeles. 2000. General Plan of the City of Los Angeles, Central City North Community Plan Update. 65 pgs.

City of Los Angeles, Department of Public Works, Bureau of Engineering, Geotechnical Engineering Group. 2015. Supplemental Geotechnical Report – Asphalt Plant No.1 – 2484 East Olympic Boulevard. April 14,

City of Los Angeles Department of City Planning Los Angeles. 1996. Safety Element of the Los Angeles City General Plan.

Southern California Association of Governments (SCAG). 2012. 2012 Regional Transportation Plan/Sustainable Communities Strategy. April

