February 14, 2014

Mr. James E. Diel
Manager of Environmental Site Remediation
Union Pacific Railroad
9451 Atkinson Street
Roseville, California 95747

REMEDIAL ACTION PLAN APPROVAL
TAYLOR YARD - PARCEL G2 SITE, 2800 KERR STREET, LOS ANGELES

Dear Mr. Diel:

The Department of Toxic Substances Control (DTSC) has reviewed the Draft Remedial Action Plan (RAP) for the Taylor Yard Site (Site) dated July 10, 2013, prepared by CDM Smith on behalf of Union Pacific Railroad (UP).

Based on the findings from various site investigations, the RAP has identified areas impacted by chemicals which include metals, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and total petroleum hydrocarbons (TPH). The RAP describes alternatives to remediate the Site, specifically excavation, soil vapor extraction, installing soil vapor barriers, bioventing, and on-going groundwater monitoring. In accordance with the requirements of the California Environmental Quality Act (CEQA), DTSC had also prepared an Initial Study and Negative Declaration.

A formal public comment period for the Draft RAP began on October 10, 2013 and ended on November 12, 2013. DTSC received several comments during this period. Attached are the public comments and DTSC’s responses. The comments were associated with land use concerns and remediation to lower cleanup standards. Based on the letter from UP dated February 11, 2014, UP has stated that UP and Trammell Crow are in escrow for the purchase and sale of Parcel G2. The transaction is based on the use of property for industrial purposes. Modification to the Draft RAP is not necessary based on the comments received. The Draft RAP is hereby approved as the Final Remedial Action Plan. Project documents and administrative records for this Site are available for public review:

DTSC Regional Records Room
9211 Oakdale Avenue
Chatsworth, California 91311.
Vivien Tutan: (818)717-6621, for appointments.
The Site documents are also available on the Envirostor website: https://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=19470006

Pursuant to the Enforceable Agreement (Docket #HSA89-90-006), please submit the Remedial Design and Implementation Workplan within 120 days of this approval. If you have any questions, please contact Ms. Jessy Fierro, Project Manager, at (818) 717-6563, or me at (818) 717-6539.

Sincerely,

Juli Propes
Unit Chief
Brownfields and Environmental Reuse Program – Chatsworth Office
CALIFORNIA ENVIRONMENTAL QUALITY ACT
NOTICE OF DETERMINATION

To: Office of Planning and Research From: Department of Toxic Substances Control
State Clearinghouse Brownfields and Environmental Restoration Program
P.O. Box 3044, 1400 Tenth Street, Room 212
Sacramento, CA 95812-3044 9211 Oakdale Avenue

Subject: FILING OF NOTICE OF DETERMINATION IN COMPLIANCE WITH SECTION 21108 OR 21152 OF THE
PUBLIC RESOURCES CODE

Project Title: Remedial Action Plan for Taylor Yard – Southern Pacific Site (Parcel G2)
State Clearinghouse No.: 199101046
Project Location: 2800 Kerr Street, Los Angeles, CA 90039
County: Los Angeles County
Project Description:
The Department of Toxic Substances Control (DTSC) is proposing to approve a Remedial Action Plan (RAP) for soil and
groundwater (Project) for the Taylor Yard - Southern Pacific, Parcel G2 Site (Site) pursuant to the authority granted under
Chapter 6.8, Division 20, California Health & Safety Code (H&SC), Section 25356.1 et seq. The RAP proposes a
remediation alternative for the project site which contains lead, arsenic, petroleum hydrocarbons (TPH), volatile organic
compounds (VOCs), and semi-volatile organic compounds (SVOCs).

The preferred remediation alternative consists of:
1) Data gaps investigation;
2) Demolition of existing concrete foundations in former Diesel Shop area;
3) Shallow soil remediation;
4) Site restoration;
5) Installation of deep soil remediation systems; and
6) Remediation systems operations & maintenance and continued groundwater monitoring.
Construction is assumed to be sequential and occur over an approximate ten (10) month period (200 working days).

As ☒ Lead Agency ☐ a Responsible Agency under the California Environmental Quality Act (CEQA), DTSC approved
the above-described project on January 8, 2014, and has made the following determinations:

1. The project ☒ will ☐ will not have a significant effect on the environment.
2. A ☒ Negative Declaration ☐ Mitigated Negative Declaration ☐ Environmental Impact Report was prepared for this
project pursuant to the provisions of CEQA.
3. Mitigation measures ☐ were ☒ were not made a condition of project approval.
4. A Statement of Overriding Considerations ☐ was ☒ was not adopted for this project.
5. Findings ☐ were ☒ were not made pursuant to the provisions of CEQA.

This is to certify that the final environmental document, comments and responses, and the record of project approval are
available to the public at the following location:

DTSC Regional Records Office: 9211 Oakdale Avenue, Chatsworth, CA 91311

DTSC 1329 (05/23/2011)
CALIFORNIA ENVIRONMENTAL QUALITY ACT
NEGATIVE DECLARATION

Department of Toxic Substances Control
Brownfields and Environmental Restoration Program
9211 Oakdale Avenue
Chatsworth, California 91311

Subject: ☑ DRAFT ☐ FINAL ☐ MITIGATED

Project Title: Remedial Action Plan for Taylor Yard – South Pacific Site (Parcel G2) Site

State Clearinghouse No.: 199101046

Project Location: 2800 Kerr Street, Los Angeles, CA 90039

County: Los Angeles County

Project Description:

The Department of Toxic Substances Control (DTSC) is proposing to approve a Remedial Action Plan (RAP) for soil and groundwater (Project) for the Taylor Yard – Southern Pacific, Parcel G2 Site (Site) pursuant to the authority granted under Chapter 6.8, Division 20, California Health & Safety Code (H&S Code), Section 25356.1 et seq. The RAP proposes to clean up contaminated soils. The purpose of the Project is to implement the proposed RAP at the Site in order to protect public health, safety, and the environment.

The Site is located west of Rio De Los Angeles State Park, in Los Angeles, California, in Los Angeles County. There are no structures present at Site.

Project Activities:

The RAP proposes a remediation alternative for the project site which contains lead, arsenic, petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs). VOCs are also present in groundwater beneath the project site; however, groundwater impacts are generally attributed to the regional VOC groundwater plume and VOC sources located upgradient of the project site.

The preferred remediation alternative consists of: 1) data gaps investigation; 2) demolition of existing concrete foundations in former Diesel Shop area; 3) shallow soil remediation; 4) site restoration; 5) installation of deep soil remediation systems (as appropriate); and, 6) remediation systems operations & maintenance and continued groundwater monitoring. Construction is assumed to be sequential and occur over an approximate ten (10) month period (200 working days). Remediation systems operations and maintenance and groundwater monitoring would continue to occur.

Finding Of Significant Effect On Environment: (An Initial Study supporting this finding is attached.) The proposed project COULD NOT HAVE a significant effect on the environment.

Mitigation Measures: None.

Juli Propes
Unit Chief Name

Supervising Engineering Geologist
Unit Chief Title

2/14/14
Date

818-717-6539
Phone #
Comment #1 - California High-Speed Rail Authority - Mark A. McLoughlin:

The Authority recommends the Department of Toxic Substances Control (DTSC) include the following elements in the Remedial Action Plan (RAP): The Authority respectfully requests that all activities related to remediation at the Taylor Yard location accommodate the construction and operation of the high-speed rail system. During review of the plans our staff noted several potential conflicts between the Taylor Yard Project and the proposed high-speed rail system in the alternatives presented, as follows:

1. Alternative #3 – Capping of the Contaminated Soils. The depth of the cap required to fully encapsulate the contaminated soils could change the current elevation of the Project site and thus conflict with current high-speed rail alignments that travel at grade in this location. We respectfully request that if this alternative is selected the Cap be designed in such a way as to not preclude an at grade high-speed rail alignment.

2. Alternative #5 – Installation of Groundwater Monitoring Wells. Installation of Groundwater Monitoring wells could potentially conflict with high-speed rail alignments that describe a tunnel option at this location. We respectfully request that if this alignment is selected these wells be constructed in such a way as to not conflict with any planned high-speed rail tunnel options. It is also noted that “With all alternatives, the site would be subject to a land use covenant to limit property use to commercial/industrial uses.” The Authority recommends that the specific language of this covenant allow transportation uses as well as commercial and industrial uses due to the fact that one current high-speed rail alignments requires acquisition of part of the Project site.

DTSC Response: There is no current plan to change the grade at the Site.

DTSC has no information to date regarding the design plan for the high speed rail. When the design of the rails are identified, DTSC can work with the Authority to determine if modifications to the groundwater monitoring system or other modifications are necessary.

Comment #2 - Friends of the Los Angeles River (FoLAR) - Lewis MacAdams:

While your community notice contends that DTSC does not have any decision-making authority on the zoning of the site or its end use, the decisions that you make regarding the site’s cleanup certainly will either constrain or streamline future options. Also, compliance with the California Environmental Quality Act (CEQA) compels DTSC to consider the cumulative impacts of this action when considered with other, related projects.

To that end, we would like to call your attention to the 10 million dollar US Army Corps of Engineers Los Angeles Ecosystem Restoration Feasibility Study (Study) which took over 7 years to complete...

... which indicates in all of its viable alternatives that the future use of the site and adjacent parcels would accommodate ecosystem restoration instead of an industrial use. Although that Study has not yet been finalized, it should be noted that it would result in changes to the river's
channel and changes to upstream and downstream parcels around the G-2 parcel even if the G-2 parcel is not included.

Given that, FoLAR urges DTSC to approve a remediation scenario that would appropriately cleanup the Metals, Petroleum, Polynuclear Aromatic Hydrocarbons, Volatile Organic Compounds, including the current cleanup for lead. We also look forward to a connection to the Rio De Los Angeles State Park with the Los Angeles River under the suggestions of the USACE ARBOR Study, as for years it has been blocked by the dangers of rail lines.

DTSC response: The Feasibility Study (FS) for the Los Angeles Ecosystem Restoration prepared by the U.S. Army Corps of Engineers (USACE) has multiple factors associated with it which as of yet are unresolved, such as a specific design, timeframe for the project and zoning changes. Based on DTSC’s discussions with Los Angeles City’s Department of City Planning, the Department has stated that it has no immediate plans to change the zoning for this area. Additionally, the Responsible Party, Union Pacific (UP), has stated that UP and Trammell Crow are in escrow for the purchase and sale of Parcel G2. The transaction is based on the use of property for industrial purposes. If the zoning for this property changes, DTSC can work with the property owner to evaluate whether additional cleanup is needed to meet the new land use.

Regarding compliance with CEQA, DTSC has evaluated cumulative impacts of this project and has considered potential impact to other nearby projects. For additional information on this subject, please see the Initial Study for this Project (https://www.envirostor.dtsc.ca.gov/regulators/deliverable_documents/9061813175/NegDecInitialStudy-TaylorYard-10072013.pdf).

The Draft RAP Alternative 5 proposes to clean up soil containing high levels of metals, volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), polynuclear aromatic hydrocarbons (PAHs) in areas where the majority of the contamination exists. DTSC believes that Alternative 5 is appropriate for the current zoning and potential future development, and is protective of human health and the environment.

Comment #3 - Natural Resources Defense Council - Joel Reynolds and Giulia Good Stefani:

The RAP does not account for future restoration or best serve the needs of the local community. Specifically with respect to the RAP, we have several concerns:

First, although the RAP appears to be based on the assumption that the site will remain industrial, the City and community’s vision for the property is for mixed-use residential and open space development; indeed, other Taylor Yard parcels have been dedicated to schools, parks, and housing. In order to realize the community’s vision for Taylor Yard, therefore, the G2 parcel currently owned by Union Pacific must be remediated to the more stringent contamination standards required for residential zoning. Trammell Crow, the potential developer, has publically stated that it does not intend to pursue industrial development on the parcel and consequently run counter to the public’s plans for the site.

Although the site is currently zoned for industrial use—and the DTSC charter limits enforcement orders to that of current zoning—we believe that Union Pacific should be required to clean up the parcel in a manner consistent with the community’s future plans for the site that also fully realizes the site’s potential for ecological restoration. Furthermore, Union Pacific (which was gifted the parcel by the city decades ago) should shoulder responsibility for the clean-up, rather than shifting to the public the increased costs of meeting the higher residential standards.
Second, in assessing impacts to the community, the RAP prioritizes relative short-term benefits over long-term benefits. DTSC recommends Alternative 5, which is the most comprehensive of the outlined options and includes continued vapor extraction, sub-slab venting, capping, and groundwater monitoring, bioventing and institutional land controls. Alternative 5 requires the excavation and removal of only 25,000 cubic yards of soil. By contrast, Alternative 4, while less comprehensive, would require the excavation and removal of 400,000 cubic yards of soil—a measure beneficial to the long-term interest of the community. However, DTSC cites disruption to the community caused by excavating and subsequently backfilling the site (i.e., increased truck traffic and noise) as an unacceptable consequence of Alternative 4. Indeed, disruptions to the surrounding community represent an important consideration in any remediation plan, but we believe that the implications of burdening future generations with potential ongoing clean-up risk represent a greater concern.

Furthermore, DTSC coordination of its remediation plan with the Army Corps of Engineers’ River restoration project offers a range of potential advantages, including a reduction in cost. As but one obvious example, DTSC could excavate all the contaminants but leave the area unbackfilled, and the Corps could subsequently commence its River channel restoration project without having to re-excavate the site.

Finally, the RAP assumes without justification that groundwater levels in the area will remain constant and that the physical River will not change. The RAP’s plan to cap the site with cement is inconsistent with the City’s stated public works projects and might, in fact, impede them. The City has already indicated its intention to remove portions of the River channel walls, which may require removal of the cap. And while Southern California is currently experiencing a drought, basin management plans aim to increase local groundwater storage near the LA River, which would compromise the contaminant-containing integrity of a cap. Simply stated, the proposed concrete cap is a stop-gap measure that would not only complicate the City’s River restoration project but also result in a higher volume of stormwater runoff and a greater risk of groundwater contamination.

Conclusion

For all of these reasons, we urge DTSC to require Union Pacific to remediate the G2 site to residential zoning standards. At the very least, we recommend that Alternative 5 include an excavation depth of 10 feet, as described in Alternative 4, in order to remove more contaminants at the site. We also recommend that DTSC staff collaborate with the City of Los Angeles Bureau of Engineering River Project Office, the Army Corps of Engineers, NRDC, Friends of the Los Angeles River, the Santa Monica Mountains Conservancy, the Mountains Recreation and Conservation Authority, California Department of Parks and Recreation, and the Los Angeles River Revitalization Corporation to coordinate a fully proposed remediation and restoration plan for the Los Angeles River and the G2 site.

DTSC Response: Regarding the comment referring to future land use and zoning, please see DTSC’s Response to Comment #2.

DTSC believes that although Alternative 4 removes much of the contamination to 10 feet, it will result in a considerable disruption to the nearby community, specifically, potential increase in excavation activities, noise, and the duration of the cleanup. DTSC believes that Alternative 5 is appropriate for the current zoning and protective of human health and the environment.

Regarding leaving excavated pits open: Due to issues regarding public health and safety, DTSC cannot allow excavated areas to be left open to accommodate alternatives in the Draft Feasibility Study associated with the Los Angeles River revitalization which may take an indefinite period of time.
Regarding the groundwater assumptions made in the RAP: The diagrams presented in the RAP and at the public meeting show that groundwater levels vary seasonally, and increase in wet years and decrease in dry years. Pumping at the Pollock field has lowered the average groundwater levels a small amount. Since the river reach by Taylor Yard is currently unlined, any alteration of the river other than lining it with concrete is not likely to affect local groundwater levels beneath the G2 parcel. Since groundwater is currently only about five feet below the channel, there is practically no available storage for groundwater in Los Angeles Narrows. The San Fernando groundwater basin has far more available storage, and is under active groundwater management, so the lack of storage capacity in Los Angeles Narrows is not a problem. Calculations in the appendix to the Draft RAP evaluated the effect of saturation on the remaining diesel-affected deep soils (either from rainfall or by raising groundwater levels in wet years). These calculations showed that wetting and draining the layer does not produce significant immediate groundwater contamination, but that degradation rates of VOCs increase after wetting events, which can create soil gas problems.

One of the elements of Alternative 5 includes capping the Site with buildings and pavement. This would help keep the biodegradation rates slow and keep levels of biodegradation byproducts low and protect the occupants.

The cap will not materially change the amount of runoff to the River, and increasing the roughness of the river by increasing vegetation and removing the smooth concrete sidewalls will reduce the ability of the River to handle runoff, regardless of the land use at Parcel G2.

The cap would be designed to direct surface water to a permanent stormwater management system. This would be constructed as part of commercial land development, which is what the land is currently zoned for. DTSC will evaluate the cap and stormwater management system on a periodic basis to determine if it is working properly or needs to be modified.

Comment #4: Santa Monica Mountains Conservancy - Irma Munoz

We understand that the Department of Toxic Substances Control (DTSC) charter limits enforcement orders to that of the current zoning, but urge you to use your powers to require Union Pacific to clean-up the site for the highest and best uses that are widely envisioned for the site and per USACE’s IFR. The path set out by the Draft RAP would otherwise likely constrain the property’s potential as an environmentally restored site for decades, counter to the mission of DTSC to rehabilitate contaminated sites for future use.

The RAP must therefore administer an approach that remediates the site to a higher standard than an industrial cleanup goal. Other parcels at Taylor Yard have become schools, parks, and housing, consistent with the City and community’s vision. The public’s intent to acquire the G2 parcel as parkland is well-known, but even in the event that it is purchased by a private developer the likely use would be residential with substantial open space. In any case, an industrial cleanup standard does not facilitate and is not consistent with these future uses. An RAP that does not move forward with a long term vision for meeting stricter residential standards that would support use as parkland hinders the public’s goal to make use of the subject property. The RAP would need to be redone in the future to accommodate any probable future park use if the highest remediation standards are not included now. Furthermore, the importance of complete site cleanup for the purpose of environmental restoration cannot be minimized, the Hallico site in Ormond Beach is good example of the significant impediments that occur when contaminants are allowed to remain. At the Hallico site, project design and construction costs to work around contamination amounted to more than the original remedial costs.
The Conservancy recognizes that DTSC sought to combine the relative merits of DTSC’s Alternatives 2-4 from the G2 Feasibility Study (e.g. extensive excavation and removal of 400,000 cubic yards of soil, continued vapor extraction, sub-slab venting, capping, and groundwater monitoring) into the proposed DTSC Alternative 5, which adds bioventing and institutional land use controls, but only excavates 25,000 cubic yards of soil. One of the criteria considered against DTSC Alternative 4 was that the community would not accept short-term disruptions that would result from removing such a significant amount of contaminated soil and then importing an equal amount of backfill material. While the impacts to the community are not to be marginalized, the environmental justice impact for future generations in the community by leaving contaminants in place are even more significant. At a minimum, the Conservancy recommends that DTSC combine the proposed extent of soil contaminant removal from DTSC Alternative 4 (which is over 16 times more soil excavation than Alternative 5) with the additional elements in DTSC Alternative 5. Furthermore, after reviewing the recommendations from Appendix K-Hazardous, Toxic, and/or Radioactive Waste Survey Report in the IFR, Section 7.3 illustrates cost efficiency in construction sequencing between contaminant remediation to river restoration. It would be mutually beneficial to the community, local river restoration partners, and Union Pacific if maximal amount of contaminants were excavated from the site and remedial excavations were not backfilled (i.e. at a minimum DTSC’S Alternative 4). At that point the USACE could step in to commence River channel removal and avoid the double-handling of these contaminated soils.

Groundwater contamination is a major concern for the San Fernando Valley generally and Los Angeles River restoration specifically. As the River is gradually restored, natural exchange between groundwater and surface flows, where human contact is possible, will become more frequent. While the subject property owner is not responsible for the Valley groundwater basin’s designation as a superfund site, Union Pacific is responsible for its portion of the contamination. As presented by DTSC Geologist, Alice Campbell, at the Public Meeting on October 24, 2013, one cleanup objective for the project is to “minimize movement of chemicals from soil to groundwater due to rain soaking in.” In response, the RAP proposes to cap much of the G2 site with pavement to prevent groundwater infiltration and contaminant movement. This solution is short-sighted as it allows contaminants to remain in place while also negatively impacting the River by increasing runoff volume and peak flows. At the same time, Southern California is in a long-term drought with water reliability and scarcity issues increasing. We need comprehensive solutions at brownfield sites, including G2, that seek to decrease reliance on imported water and protect our rivers and watersheds. The RAP is the proper venue for correcting the impacts at the G2 site by facilitating the natural hydrologic cycle to resume instead of a planning to cap and seal it from precipitation and groundwater infiltration.

The RAP is premised on several incorrect or unsupported assumptions; that the only future use will be industrial, that groundwater levels will remain constant, and that the physical River will not change. Based on these assumptions, the RAP proposes minimal remediation of near-surface contaminants and extensive capping, as previously noted. This approach would preclude the USACE restoration project to remove portions of the River channel walls along this reach. DTSC’s role is not to render infeasible local jurisdictions’ future public works projects. Additionally, basin management plans call for increasing local groundwater storage, which would increase groundwater levels under the subject property.

The proposed capping does not protect groundwater supplies from the contaminant mobilization that would undoubtedly occur. Instead, the study assumes that up-gradient pumping would continue, maintaining artificially lower groundwater levels. The approved approach must consider planned basin management actions and ensure that the proposed remediation does not preclude reasonable local management decisions. As the property owner, Union Pacific is
liable for groundwater contamination that would occur during normal basin management if the site is not properly remediated.

Regardless of what occurs on the subject property in the future, the USACE and City’s restoration plan calls for increased public access to and interaction with the Los Angeles River. Even if Union Pacific is only required to remediate the site itself to industrial standards, the remedial action must prevent contamination that would endanger the public using the River. This scenario must include the assumption that the eastern concrete bank may be removed and that groundwater levels will increase consistent with basin management plans. The RAP does not consider the proposed remedial action’s effects on the River and needs to.

As explained above, the subject site is central to the USACE and City’s planned River restoration. Some have even called the G2 parcel the “crown jewel” of the Revitalization Master Plan; certainly the site reconstructed as wetlands and riverine habitat is crucial to ensuring success of the IFR. While DTSC is a neutral party in local planning efforts, it has a responsibility to ensure that its decisions are not detrimental to local communities. While the DTSC’S Feasibility Study did not chart the course for cleanup to residential standards, DTSC should ultimately mandate that Union Pacific undertake those actions, which will be congruent to USACE’s plan and spare public agencies from needing to reopen this process should they acquire the site in the future and accept liability for remediation. Ideally the property owner should be responsible for returning the site to its pre-industrial condition, which was land given to the railroad by the public. At a minimum, the Conservancy recommends that the proposed DTSC Alternative 5 be augmented to include the soil excavation depth and extent from DTSC Alternative 4. Furthermore, prior to RAP approval, DTSC staff should be in contact with the City of Los Angeles Bureau of Engineering River Project Office, USACE, Friends of the Los Angeles River, Mountains Recreation and Conservation Authority, California Department of Parks and Recreation, and the Los Angeles River Revitalization Corporation, and the Conservancy to consider fully the USACE restoration plans per the IFR for the Los Angeles River and the G2 site. Even if DTSC does not require the property owner to remediate the site above industrial standards, the remedial action must protect off-site public uses in the Los Angeles River, including human contact with surface water and municipal use of groundwater supplies. To the extent that groundwater surfaces through the soft-bottom channel, the quality of this water must also be suitable for human contact. The Conservancy does not believe that the proposed remedial action meets this challenge.

DTSC Response: Regarding the topics related to residential cleanup levels, zoning, backfilling, capping and groundwater infiltration, please see DTSC’s Response to Comments #2 and #3.

Regarding the comment concerning other Taylor Yard parcels, the property owners/developers for those other parcels had a specific development plan and remediated the land according to the proposed land use.

Regarding future changes in groundwater levels to site changes, as part of post cleanup activities, DTSC will require UP to submit annual operation and maintenance reports to evaluate and address any future changes to the Site. Five year reviews will also be conducted by DTSC to determine whether the remedy is protective of human health and the environment.

Comment # 5: I am in agreement with all that is to be done and the improvements.

DTSC Response: Thank you for your comment.

Comment #6: This property is on the riverbank of the Los Angeles River. LA Regional Water Quality Control Board has issued orders for Total Daily Maximum Loads (Pollutant Loads)
including Metals and Bacteria. This site is an existing contributory factor and would affect the costs (of cleanup) of the proposed US Army Corps of Engineers LA River Ecosystem Feasibility Study.

The costs for TMDL remediation is on the backs of the property owners in the City of Los Angeles and the LA County Flood Control District.

The site is up for sale. The City of Los Angeles would make the site a park as part of the LA River Revitalization Master Plan. LA River Revitalization Corporation is in negotiations for purchase of the site at a reduced price.

The funding being considered by the City of Los Angeles is Proposition O bond funds (local Clean Water bond). The City would be the buyer. Soil remediation costs are $30-$45 million.

So, the current Industrial Use is not the intended use. We understand there is no access to the property.

The area is one of concern with Air Quality issues (Metrolink Maintenance Yard) with the surrounding community. The community has outreached to Congressman Adam Schiff.

Alternative 4 should be considered due to the liabilities incurred by the pollutant loads on the LA River.

DTSC Response: Currently, a stormwater management plan and Best Management Practices (BMPs) are in place and maintained on an ongoing basis to prevent stormwater run-off to the LA River. The remediation described in Alternative #5 will reduce the potential for site contaminant to migrate to the LA River, and as part the commercial development, would include permanent stormwater management measures.

Regarding the land use, please see DTSC’s Response to Comment #2.

Comment #7: Alternative #5 – The removal of soil with high contents of metals would reduce contamination of TPH and VOCs in deeper soil. That is most effective. That is important to all concerned.

The Safety Plan – The covering of the soil is good to prevent the dust from going everywhere. I like the soil being covered and sprayed with water, then all rails and trucks will be covered. That will be a big job. That will be safe for the environment.

DTSC Response: To clarify, during the cleanup activities, the excavated soil will be covered, and railcars and trucks carrying the soil will also be covered. Water will also be used to spray the surface soil during excavation and loading to prevent dust from being generated.

Comment #8: I attended the meeting the evening of October 24th, 2013 and I believe Alternative Cleanup #5 is the correct approach to prepare the site for industrial development.

DTSC Response: Thank you for your comment.

Comment #9: I think it is a good that they are going to look at health and past mistakes, but not without spending too much money for the job.

DTSC Response: Thank you for your comment.

Comment #10: I think they should clean it up that’s all I can say. Anything with chemicals might be a concern.

DTSC Response: Because the zoning for the area is commercial/industrial, UP will be cleaning up the contamination to commercial standards in the majority of the Site. There will
also be engineering and institutional controls, such as operation and maintenance of any ongoing cleanup systems and a land use covenant, to limit the use of the property to commercial/industrial use. This Site is not zoned for residential use; this would require cleaning up chemicals in the soil to lower action levels. Please also see the response to Comment #2.

Comment #11: We like the proposed cleanup plan that takes the least time. We are very interested in the LA River & the Taylor Yard. We fear too much development of that area as it is such a haven of [illegible] people. Are you guys aware that the LA River has a commission to figure out what to do with themselves? You guys should team up. They are called: "MYLARIVER.ORG." Thank you for your time! And thanks for this cleanup effort.

DTSC Response: Thank you for your comments.

Questions and Comments From Public Meeting, October 24, 2013

Comment #12: Are you planning to hold any other meetings, because this affects all of us, not just this side, so that is my first question.

And I hope you would. The library is a good location for you to do this, and also more outreach to people. Everybody doesn't have a computer, so you have the funding, you have a few extra dollars and please try that.

For example, the schools, all of the schools should know this information so they can take it to their homes and the parents will show up.

DTSC Response: DTSC is not planning on holding another meeting for the RAP activities relating to Taylor Yard. Thank you for your suggestion.

A comprehensive public outreach strategy was included in this project. DTSC made a concerted effort to share information with the nearby communities including notifications and distribution of flyers to staff, administration, students and parents at primary and secondary schools in the area as well as notification to Los Angeles Unified School District employees. Public Notices and meeting announcements were posted in two local newspapers (English and Spanish language), and Community Notices detailing the project, the date of the public comment period and information on the cleanup were mailed out to residents and businesses within a quarter-mile radius of the Site. Community Notices were also provided to FoLAR and other community stakeholders in an effort to increase the distribution of information in the area.

Comment #13: I know that through time, supposedly people, organizations, entities, have come and supposedly they're trying to clean up that area. But they never really had done it properly, because the very first time it lasted just a few days and not enough people -- again, not enough people knew about it.

And then after that, supposedly about 6 inches from the top, that's not acceptable. Ground water is much deeper than that, and I believe -- I don't know which one of the people up here mentioned that, yes, after how long a break, bacteria and all of that, so maybe even now, it hasn't been taken care of by the bacteria

DTSC Response: Since the early 1990s, there were some cleanup activities done including excavation of soil and soil vapor extraction. DTSC provided notification of these activities to the nearby communities as part of the CEQA process.
Regarding the remaining contamination, there are bacteria in the soil and groundwater that have broken down some of the chemicals. Groundwater is at 30 ft below the surface. Much of the chemicals in the groundwater have been reduced considerably over the years. However, contamination is still persistent in the soil. Alternative 5 uses bioventing to introduce air to the deeper depths and allow for increased breakdown of the contaminants by bacteria that exist in the soil.

Comment #14: How far is the Pollock Well Field?
So when you say that, that's where the cleanup or most of the cleanup gets done, correct?

DTSC Response: The Pollock Well Field is about 2.5 miles from Taylor Yard Site. The Los Angeles Department of Water and Power is cleaning up the groundwater in the Pollock area. The groundwater contamination being cleaned up at the Pollok Well field is from other sources. That cleanup has reduced the chemicals that were migrating to the Taylor Yard Site. That is separate from the cleanup proposed for this Site.

Comment #15: How long has the Pollock DWP been working on this water, more or less?

DTSC Response: The cleanup for the Pollock Well Field has continued for about 13 years.

Comment #16: So how does this project work with the Army Corps of Engineers and their plan for the L.A. River project and L.A. City's 820, which includes Taylor Yard?

DTSC Response: DTSC understands that recently a Feasibility Study (FS) prepared by USACE was available for public comment. The FS describes utilizing the Taylor Yard Parcel G2 as part of the design alternatives to develop a riparian ecosystem for the Los Angeles River and nearby areas. Because the zoning remains industrial/commercial and there are no immediate plans by the City of Los Angeles to change the zoning, DTSC has required UP to clean up the Site to commercial standards. Please also see the response to Comment #2.

Comment #17: I mean, it's like there's a toxic wound under the G2 parcel; is that accurate to say? What are you going to do about it? How are you going to clean it up?

DTSC Response: There is contaminated soil located on Parcel G2. The Draft RAP describes multiple technologies that will be used to clean up and reduce exposure from the contamination at the Site, such as excavating and disposing offsite, installing a soil vapor extraction (SVE) system, using bioventing, and capping the soil. The SVE system uses vacuum to pump out VOCs from the soil. The vapors are then collected and treated at the surface. Bioventing wells will introduce air to the deeper soils containing VOCs that are associated with residual petroleum products. This will allow the petroleum to break down and release the VOCs over time.

Comment #18: I know you have a couple of Alternatives; my question is which one is your preferred one, and secondly, how much will it cost and who is going to pay?

DTSC Response: There are five alternatives in the Draft RAP. DTSC’s preferred cleanup is Alternative 5, which is a combination of the other alternatives:

- excavation and off-site disposal of contaminated soil;
- SVE: using a vacuum to pump out vapors and treat the vapors at the surface;
- bioventing: bringing air to the deeper soil to help breakdown soil containing VOCs and petroleum
- vapor barrier: installation of a liner under buildings to prevent VOCs from entering them;
• cap: using pavement or buildings to cover the soil containing residual levels of contamination;
• stormwater management program: a plan would be developed to help control erosion and loss of soil during excavation and site restoration and convey storm water run on away from the project site;
• groundwater monitoring: periodic sampling and evaluation of chemicals found in groundwater;
• land use covenant: to restrict the property to industrial/commercial use.

UP is the owner and the Responsible Party (RP) for the cleanup; therefore, they will be paying for the cleanup. The cost for Alternative 5 is $7.9 million.

Comment #19: And you have excavation up to 2.5 feet. What's the volume of soil that you have to remove from the site?

DTSC Response: For Alternative 5, approximately 25,000 cubic yards of contaminated soil will be removed and disposed offsite. Some areas will be excavated to 2.5 ft and others to 5 ft based on where the majority of the contamination lies.

Comment #20: This 25,000 cubic yards. What are the categories, what kind of landfill would accept that?

DTSC Response: When the contaminated soils are removed and stockpiled, soil samples will be taken to determine the type of waste the soil contains, and then based on the results of the sampling data, the soil is classified as hazardous or nonhazardous, California Hazardous Waste or Federal Waste. It will then be taken to appropriate waste disposal facilities.

Comment #21: I know you spoke about industrial cleanup because the zone is the industrial zone. Hypothetically, what would be the cleanup efforts be if it was a residential site, a condominium? So do you have an estimate of the volume of excavation needed?

DTSC Response: The closest scenario currently for a cleanup to residential standards would be Alternative 4, which is excavation to 10 ft, but this would still leave residual contamination at deeper depths. The estimated soil removal is about 415,000 cu. yds. DTSC has not evaluated a residential cleanup scenario for this Site.

Comment #22: If you clean the soil to the level of Alternative 5, would that allow it to become parkland at G2 parcel? Wetlands park?

DTSC Response: Not all areas will be removed to industrial standards -- soils with the highest concentrations will be removed but some contamination will be left in place and capped to prevent exposure. Therefore some of the areas that are capped might need additional remediation if the land use changes, but this would be based upon an additional evaluation. The cleanup standards would depend on multiple factors including what kind of park is planned for this Site.

When a site is evaluated for residences or commercial industrial use, a standard risk analysis is performed to determine health risks using protective assumptions on possible exposures which may occur. There is not a standard park exposure since parks can be used in many different ways and this may require different levels of cleanup. Similarly for a wetland, the level of cleanup would depend on the specific ecology which would be created. Therefore DTSC cannot
confirm that Alternative 5 would cleanup the Site to a level that would be acceptable for a park use.

Comment #23: Several of us have been participating in this, in discussions about cleanup alternatives for 20 years, had several meetings with DTSC on this, okay, have provided plans of research on alternative methods of restoration, particularly with respect to this land being utilized as part of the river and its corridor or greenway, and if it is utilized for ecological restoration or public use and open space, none of these, 2 through 5, not even one makes sense. So we’ve provided you with all kinds of data, all kinds of research on alternatives, none of that is here, none of it is discussed. It's very -- it's made very clear in this report that the intention is to secure this land for industrial uses, that that's all this is designed for. So I've always been kind of confused about what the agency's function is. It's a public agency and yet it seems to serve private entities and disregard public input.

DTSC Response: DTSC has taken the public’s and agencies inputs into consideration during our process of refining the Feasibility Study and the Draft RAP as much as possible but the cleanup alternatives were evaluated based on effectiveness, land use, cost and other criteria. As you may know, DTSC’s function is to protect human health and the environment. We work with parties to investigate and clean up sites sometimes through voluntary means and other times through enforcement. Regarding land use, please also see the response to Comment #2.

Comment #24: Is this, indeed, intended to, as it seems to indicate here, support a particular land use?

DTSC Response: The remedy is based on the existing land use. DTSC develops cleanup goals for projects based on the current and future land use. Currently the site is zoned for industrial/commercial land use. We have spoken to a representative in the City Planning Department and they have confirmed it is currently industrial, and they have confirmed that there is no application for changing that land use in the immediate future. Please also see the response to Comment #2.

As far as working with UP, this is not a voluntary process that we have with them. We have an enforceable agreement, similar to an order which requires the RP to investigate and clean up the Site appropriately. The RP needs to comply with the agreement. It has taken a considerable amount of time to get to this point due to various factors, but we are moving forward.

Comment #25: This agency doesn't seem to utilize TSO. When you say that you've been complying, a long time coming, time schedule orders doesn't seem to be a tool in your toolbox; is that correct?

DTSC Response: DTSC utilizes schedules for the cleanup of projects. However, schedules change due to various factors, such as developing changes to the Feasibility Study to address the stakeholders’ concerns.

DTSC has an enforceable agreement with UP. The schedule of projects also depends on if there’s an immediate threat. This Site currently does not pose an immediate threat.

Comment #26: Is the groundwater a concern in this location?

DTSC Response: No. There is contamination attributable to the site, but it is not a significant amount. There is also contamination from offsite sources.

Comment #27: How are you going to clean up the concern with the problem onsite?
DTSC Response: Most of the onsite groundwater issues are from the volatile organics, from the solvents. SVE systems pull the vapors out of the ground. These systems have been used in the past and have reduced concentrations in some areas. SVE will be used again in certain areas that still contain vapors at elevated concentrations. Alternative 5 also discusses using bioventing to breakdown vapors that are trapped in petroleum hydrocarbons. Bioventing introduces air to these depths and will break down these products further. Please also see the response to Comment #18 for a summary of the cleanup activities.

Comment #28: How long will it take for the groundwater to clean up with this vapor system?

DTSC Response: The groundwater and soil contamination are two different impacted areas. Cleaning up the VOCs contamination in the soil will reduce any future impact to the groundwater. A lot of the cleanup happens rather fast, in about six months, because the system is getting the majority of vapors out which has been there for years and years. And then as you get all the easy stuff, it starts removing it slower and slower until finally you get to a point where very little VOCs are being removed.

Comment #29: What is the time for that 95 percent to be removed?

DTSC Response: Most of VOCs may take six months to a year to remove but the residual contamination can take years.

Comment #30: So which of you can speak to the need for the Covenant in Alternative 5? Can you speak to the need for the Covenant and what drove that to insertion into that alternative, and what the parameters are and all that?

DTSC Response: Usually if a site is not cleaned up to unrestricted or residential use, we need to make sure that current and potential owners know that schools, daycares, hospitals cannot be built on that property. The Covenant can be withdrawn if the contaminants are removed and meet residential standards.

Comment #31: What about the new apartments, condominiums, whatever you want to call them, that are going up on San Fernando Road and the next street, are people going to be living there?

DTSC Response: A developer came into a voluntary agreement with DTSC to investigate and clean up the site to residential action levels. That site has been cleaned up to residential standards. The plan of the development is mixed use, residential and commercial.

Comment #32: All that water is not going to stay on Parcel G, and it was mentioned earlier by the young lady over there with the Irish Soap, there were problems over there and it's everywhere. And you know what, I've learned too much about politics to whatever you say, blah, blah, whatever, fine, you know, but I know.

DTSC Response: The groundwater contamination has reduced considerably within the last few years. UP is responsible for cleaning up the soil in the G2 parcel which will reduce potential impacts to the groundwater.

Comment #33: When did they clean it [Parcel C] up? How deep did it go?

DTSC Response: The cleanup in Parcel C was conducted by Taylor Yards, LLC in May 2013. One area was excavated to about 10 ft.
Comment #34: I'd like to say that the outreach, I'm sorry whoever did it, but I don't think they did a good job. I don't have a student here at the school. I heard about the meeting the last minute. I'm an outreach person myself. We have a council, two on each side, we could, you know, quickly zap this e-mail over.

Also we have neighborhood councilors that are also able to give us this information. So sometimes people come in and say they do outreach to a couple of people. That's not the community, and we really need to know about this information.

It's quite technical and hard to understand. So, we need people to simplify it for us to understand and to also take part, unless they don't want us taking part.

DTSC Response: Please also see DTSC Response to Comment #12.

Comment #35: Sotomayor is one of the schools having some issues there. There are fumes that recently the school has been smelling coming out of their facility.

Also, when these cleanups are done, are not the communities notified? I mean, we've had some parcels of new development where we have community people actually complaining about the dust and dirt and having actual council people going over there.

And, yes, there is dust and dirt flying around, and I know they're supposed to water it down and hose things, but it takes community people to actually make people accountable for this that is going on, also.

DTSC Response: LASUD is currently performing periodic groundwater and soil vapor monitoring to ensure offsite contaminants are not impacting human health. DTSC is following up on the concerns at the Sotomayor High School.

Usually once a cleanup is completed, the community is not notified further; however, the public can sign up for email alerts on our public database, Envirostor to see if there are any updates for the Site: https://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=19470006

The RP is responsible for following the health and safety requirements for cleanup activities. DTSC provides oversight to ensure the cleanup is done appropriately. If the community notices dust during cleanup activities under DTSC’s oversight, please contact the DTSC project manager.

Comments #36: Were the people from L.A. Unified School District notified about the community meeting?

DTSC Response: Yes, DTSC sent notices to LAUSD, and we also contacted school administrators directly.

Comment #37: Can you speak to the decision to have a meeting on this side of the river for one, and what the decision-making process is, if you could answer that question for me; and, two, if you can tell us the cost of the various alternatives.

DTSC Response: We looked for nearby venues that were accessible and available in the evening as opposed to conducting a meeting during the day. We also looked at what was close to the site and the library and what was available during this time period.

There were other venues that we considered, but they were not available either during the evening or during this period. Some of them were booked in advance.

Regarding costs, Alternative 5 will cost $7.9 million and Alternative 4 will cost $33.5 million.
Comments #38: So was that a driver in your decision to go with 5 at $8 million rather than 4 at $33 million?

DTSC Response: The alternatives were evaluated based on the nine criteria of the National Contingency Plan; cost is one of the criteria that we look at. Basically, if we excavated down to 10 feet there still would be residual amounts of contamination at further depths. We preferred Alternative 5 because it is a blend of all the other alternatives: soil vapor extraction will remove the VOCs, bioventing will cut through the petroleum and remove the trapped VOCs which will prevent future impacts to the groundwater.

Comment #39: If this is driven by cost and science and all that, there’s no blending here of using bioremediation. There’s a time consideration there, which would be cost or lost opportunity to the property owners in terms of the real estate market, perhaps. But then that’s never definitely calculated because the real estate market goes up and down. So it could end up being better than that way, while cheaper to remediate, but I’ve never seen that included in the DTSC’s suite of alternatives.

DTSC Response: Bioremediation, in terms of bioventing was evaluated and is one of the components of Alternative 5. Bioventing does not interfere with land use that can continue while you are building structures and occupying the area. It is not in the way of anything. Phytoremediation, where trees or plants occupy the surface, was not evaluated here. For commercial/industrial use, that type of remediation would occupy areas that may be needed for potential buildings.

So as far as implementability, that fails the implementability criteria, because you can’t do anything else with the land while phytoremediation is occurring. It’s not that they weren’t considered; it’s that they didn’t make the cut.

Comment #40: So it interferes with profit. Implementable, but it interferes with profit, so therefore, for the developer, specifically, it’s not feasible, but it’s implementable.

DTSC Response: There are a lot of things that can be done, but they’re not practical. Please also see the response to Comment #39.

Comment #41: So the question is why phytoremediation was not considered, and the answer was that it wasn’t implementable. And my return question being, so the driver here in defining implementable is something that doesn’t get in the way of quick profits for the property owner. If it’s certainly implementable, it’s certainly feasible, it’s certainly cheaper, time being the only issue here, although this property has sat empty for several years. It is implementable, so either define implementable and tell me what your prime considerations are, and it seems to me your prime consideration is quick profits for the property owner.

DTSC Response: It’s also that it doesn’t go much past 5 feet. So if you’re trying to get to contamination that is 10 feet or further, you can’t reliably do that with phytoremediation. You don’t have a lot of control with phytoremediation over where you are cleaning up.

Comment #42: I just have a question about Alternative 4. Would it have included land use controls for development in the way that Alternative 5 is?

DTSC Response: Alternative 4 consists of excavating contaminated soil to 10 feet using industrial standards and off-site disposal. Yes, there would be residual contamination still present with Alternative 4. It would not be cleaned up to residential standards.
Comment #43: And one other question, if you can speak to status changing over time. I know that industrial and residential standards can always be updated. And with your orders, you can require the RP to do more work. Is there any kind of potential that that could be subject for this site in the future?

DTSC Response: If the land use was changed in the immediate future, it may be possible to consider residential standards. But right now this Site is zoned for commercial/industrial land use and that is what we’re working with. So if it changes in the future, the landowner would be responsible for additional cleanup. Please also see the response to Comment #2.

Comments #44: How much communication during the development of these alternatives did you have with the River Project Office in the City of Los Angeles.

DTSC Response: We have met and have had calls with the City’s River Project Office during the Feasibility Study and Draft RAP process. The previous DTSC project manager for this project recently retired. He, along with the Branch Chief of our Program had met with the City and other groups a few months ago.

Comment #45: I forgot to ask how much input the developer on this property had to the process.

DTSC Response: From what we know there is the developer, Trammell Crow, that is lined up to purchase the property for commercial/industrial use. We are not aware of the degree of Trammell Crow’s input.

Comment #46: I am quite worried about the contaminants here, we know for a fact, and it's scary. We have been working on our community with it. It takes community people to notify certain entities about this these, which I think is wrong. Many of us take for granted that someone is watching over us, but we know for a fact that this is not true. The community right here is trying to get an assessment, the first time we were able to do it, and has it happened yet, no. Again, I'm going to remind people that, you know, there is a bike path, we have a lot of people riding the river, walking the river. Our kids are playing adjacent to those parcels. When they knocked down that first -- cleaned up that area of G2, we weren't notified.

We were over there walking and noticed we were getting nosebleeds, sinus issues. And I noticed this big puff of smoke where these buildings are falling. There's nothing being done over there to protect or notify us. We have issues with that. The outreach, I think, really needs to be worked on. You just can't send a flyer to school and say that's outreach. That's wrong. I mean, if you don't have a student here, which I don't, I'm 60 years old, I don't have a child in elementary school or high school. If you really want people here, if you want to notify them what is going on, then you need to have a better way of outreach.

DTSC Response: DTSC was not involved in the demolition activities at the Site. UP states that all necessary permits were obtained to do the work, including permits and involvement with the Southern California Air Quality Management District.

Prior to beginning removal actions at the Site, DTSC’s policy is to send notifications to the nearby communities by mail and publish a notice in the local newspaper. It is unclear which specific cleanup activity this comment is referring to. DTSC will follow up on this with the community member.

Comment #47: So the development of alternatives, phytoremediation not considered because it's not deemed implementable, I would argue that is it, indeed, implementable. But if you're going to define implementable as, you know, quick profit for the developer then that should be
its own criteria. That shouldn't be a way to define implementable, because there's not the definition of implementable. Indeed, it only does go down to a certain depth, but once that's been done, you have clean soil, you can move that soil around and you can go down further. It is a question of time, but it is considerably cheaper and it has a good result. And we have, over the years, provided research to you on just that. In fact, the developer, the owners – excuse me -- have begun some of that as soon as the buildings were removed. There are local plans that do quite a fine job. The developer/owner could have even piloted parts of the site to see how that could go at just about no cost. You could have asked them to do so. We have been providing this input to you for years, so that's the comment on that.

It's difficult for this community, I think, to wrap their heads around the railroad's responsibility only extending to cleanup to the current zoning. The railroad was given much of the land that they have profited off of for the last 150 years by the public. The railroad has contaminated most of that land. Then when those lands want to go back to public use, leave it to the public to clean up. This is one of those things that you can't really work with given your constraints, but it is an outrage and an insult. So on top of that, everyone working in this community and paying attention to this site has known that this site has been intended for flood plain restoration, habitat restoration, for two decades. That we still continue to play with the terms that we now have in front of us, as though this were something reasonable that the property owner and those that did the contaminating here would only be asked to use the cheaper of the alternatives in front of us to give it the quickest job of getting it just to industrial use, as though the developer who has the option were really going to build on it and was not, again, just looking to be profiting on the public's back.

It's difficult. You're a public agency that's supposed to protect the public interest. You have a role in this. I understand you're proscribed, but we're all playing this hysterical charade with the city land for habitat restoration, and yet not enforcing a change of zoning, not having the cojones to do a simple thing that would make this a little easier to manage. That we're playing a game as though they really intend to build and deserve a profit, that we're still doing this dance with the railroad when we all know what all the parties really want. Swapping a property for another piece of real estate, that the railroad would then be happy, us having to either -- giving this land for free because it's worth nothing now. The more they invest in cleanup, the more they can justify charging us for that land. Somebody is profiting every step of the way. The River Revitalization Corps is next in line. This is not good for any of us. We are the taxpayers and we're paying time and time again for this. And it's -- it's laughable and it's sad, and it would be nice if we were all honest about what was really going on and what we're really looking at and who we all really serving.

DTSC Response: Regarding phytoremediation, please see DTSC’s Response to Comment #39, 40, and 41.

Regarding zoning, please see DTSC’s Response to Comment #2. If you have additional questions with regards to changing the zoning of this Site, please contact the City of Los Angeles, Department of City Planning at (213) 482-7077 or visit their website at http://cityplanning.lacity.org/. Thank you for your comments.
Taylor Yard – South Pacific Site (Parcel G-2) Initial Study for Remedial Action Plan

September 2013
CALIFORNIA ENVIRONMENTAL QUALITY ACT
INITIAL STUDY

The Department of Toxic Substances Control (DTSC) has completed the following document for this project in accordance with the California Environmental Quality Act (CEQA) [Pub. Resources Code, div. 13, § 21000 et seq] and accompanying Guidelines [Cal. Code Regs., tit. 14, § 15000 et seq].

PROJECT TITLE: Taylor Yard - South Pacific Site (Parcel G-2)

PROJECT ADDRESS: 2800 Kerr Street
City: Los Angeles
County: Los Angeles

PROJECT SPONSOR: Union Pacific Railroad Company
Contact: James E. Diel
Phone: (916) 789-5184

APPROVAL ACTION UNDER CONSIDERATION BY DTSC:
- Initial Permit Issuance
- Permit Renewal
- Permit Modification
- Closure Plan
- Remedial Action Plan
- Interim Removal
- Regulations

STATUTORY AUTHORITY:
- California H&SC, Chap. 6.6
- California H&SC, Chap. 6.8
- Other (specify):

DTSC PROGRAM ADDRESS:
Chatsworth Office
9211 Oakdale Avenue, Chatsworth, CA 91311
Contact: Jessy Fierro
Phone: (818) 717-6563

PROJECT DESCRIPTION:

The Department of Toxic Substances Control (DTSC) is proposing to approve a Remedial Action Plan (RAP) for the Taylor Yard - South Pacific Site (Parcel G-2) ("proposed project") pursuant to the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986; the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) in Title 40 of the Code of Federal Regulations (CFR), Part 300; and Chapter 6.8, Division 20, California Health & Safety Code (H&SC).

The proposed project consists of the following six remedial activities: 1) data gaps investigation; 2) demolition of existing concrete foundations in former Diesel Shop area; 3) shallow soil remediation; 4) site restoration in the form of backfilling and compaction of all excavated areas and grading of the project site; 5) installation of deep soil remediation systems (as appropriate) consisting of vadose zone and groundwater monitoring wells, bioventing system, soil vapor extraction system, if necessary, based on the data gaps investigation, and sub-slab venting system; and, 6) remediation systems operations and maintenance and continued groundwater monitoring. Construction is assumed to be sequential and occur over an approximate ten (10) month period (200 working days). Remediation systems operations and maintenance and groundwater monitoring would continue to occur.

Location:

The project site is located in northeast Los Angeles, near the intersection of the Golden State Freeway (Interstate 5) and the Glendale Freeway (State Route 2). Refer to Figure 1 for the Site Vicinity Map. Access to the project site is restricted by a chain-link fence at its perimeter. Site access points are located at the main gate at the southern boundary of the project site, and a second gate at the northern boundary of the project site (which is shared with Parcel G-1), near the active railroad tracks. The project site is currently inactive. Distinct features of the project site include two depressions at the location of the former storm water basins, the South Turntable, surface paving and foundations associated with the former Diesel Shop and other site buildings and approximately 800 feet of rail spur along the southwest corner of the project site (the rest of the spur and other tracks were removed during the 2011 project site decommissioning activities). The Los Angeles River (River)
bounds the project site on the west. Refer to Figure 2 for the Site Location Map.

Background:

The project site has been used by the UPRR for railroad operations since the early 1890s. Principal historical uses have included locomotive and refrigerator car maintenance, rail car sorting and assembly, and locomotive fueling. Additional uses of portions of the yard included rail-car storage, switching, equipment storage, and utility department shops for electrical, mechanical, and plumbing works. Historically, these operations have taken place throughout the 244-acre Taylor Yard site. However, in 1990 rail operations were terminated in an area of approximately 175 acres. This portion of the Taylor Yard (referred to as the Sale Parcel) was parcel and sold to various entities, including the California State Department of Parks and Recreation (Parks Department), the Los Angeles County Metropolitan Transportation Authority (Metro), Legacy Partners, LLC, Federal Express, and Nelson Nameplate. Between 1990 and 2003, the remaining 69-acre portion of the Taylor Yard (referred to as the Active Yard and/or Parcel G) was used to support maintenance and locomotive fueling operations. In 2003, rail operations at the Active Yard were greatly reduced as UPRR developed new facilities to meet the changing dynamics of rail operations in southern California. As a result, locomotive fueling operations were terminated entirely, and maintenance activities were greatly reduced. The recent reduction of activity at the Active Yard allowed UPRR to subdivide Parcel G, and sell the northern 20 acres (referred to as Parcel G1) to Parks Department. This transaction was completed in 2003.

The RAP proposes a remedial alternative for the project site, which contains lead, arsenic, petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs). VOCs are also present in groundwater beneath the project site; however, groundwater impacts are generally attributed to the regional VOC groundwater plume and VOC sources located upgradient of the project site.

The preferred remedial alternative consists of hot-spot removal, backfilling, and grading (as part of the proposed project) of those areas. Complete capping of all or most of the remedial action areas will occur with future building foundation slabs and paved areas for purposes such as parking lots (to occur at a later date as part of future development, which is unknown at this time). A sub-slab venting system with a vapor barrier membrane would be installed during building foundation construction (this would also occur at a later date as part of future development, which is unknown at this time). A soil vapor extraction system (VES) and associated wells may be installed if necessary, based on the data gaps investigation. The VES is analyzed in this Initial Study and further information regarding this system is contained in the RAP. This would likely also occur at a later date as part of future development. The remedial alternative is designed to achieve all of the remedial action objectives (RAOs) while resulting in maximum reductions in risk and site-wide exposure point concentration (EPCs) with minimal localized excavation.

Proposed Project:

The following RAOs have been developed for the remedial action associated with the project site:

1. Minimize direct contact/ingestion of soil from the project site containing Constituents of Concern (COCs) at concentrations exceeding preliminary remediation goals (PRGs);
2. Minimize leaching of COCs from vadose zone soil to groundwater due to surface water infiltration;
3. Minimize indoor air vapor intrusion of volatile COCs from groundwater and soil at the project site.
4. Minimize migration of and/or inhalation of airborne dust from the project site containing COCs at concentrations exceeding the PRGs.

In order to meet the RAOs listed above, the proposed project consists of the following six remedial activities: 1) data gaps investigation; 2) demolition of existing concrete foundations in former Diesel Shop area; 3) shallow soil remediation; 4) site restoration; 5) installation of deep soil remediation systems (as appropriate); and, 6) remediation systems operations & maintenance and continued groundwater monitoring. Construction is assumed to be sequential and occur over an approximate ten (10) month period (200 working days). Remediation systems operations and maintenance and groundwater monitoring would continue to occur. Following is a description of the six remedial activities:

1. Data Gaps Investigation – A subsurface investigation would be conducted prior to implementation of the proposed project to address the six data gaps identified previously during the development of the
Feasibility Study (FS). The results of the data gaps investigations would be used in the final remedial design. Specifically, the data gaps investigation focus on further characterizing the presence of contaminated soil beneath the former storm water basin, Diesel Shop and South Turntable, additional soil gas sampling within the Area 3 former VES radius of influence (ROI) and the footprint of the former Diesel Shop, and performance of a pilot bioventing study consisting of installation and monitoring of three vadose zone wells (in the vicinity of well W-27) to determine the ROI anticipated from passive soil bioventing. This is the initial phase of the proposed project and is expected to take approximately three weeks to complete, with the pilot bioventing study anticipated to extend for an additional one to two months.

2. Demolition – Prior to the excavation phase of the proposed project, the existing concrete foundation in the former Diesel Shop area (only within the limits of this soil excavation) would be demolished and removed from the project site. Demolition is anticipated to occur over a two week period.

3. Shallow Soil Remediation – For the proposed project, this task consists of excavation activities associated with areas of most impacted/contaminated soil (‘hot spot’ areas) as identified in the RAP. The RAP also specified removal of soil from non-capped areas (areas that are expected to not be covered by the hot-spot excavation or future building foundations and pavement) to a depth of 5 feet. This activity, however, would be performed as part of the mass grading during future site redevelopment and consolidated within the footprint of the cap and is not included as part of the project. Hot spot areas can be defined as areas with elevated concentrations of lead, TPH, arsenic, and antimony. As graphically depicted in Figure 2, the upper 2.5 to 5 feet of soil of the hot spot areas would be removed to minimize direct exposure to soil contaminants. The excavation areas and depths were selected such that the soil removal would result in site-wide 95 percent upper confidence limit concentrations to be below the respective site-specific PRGs of 1,400 mg/kg and 320 mg/kg for TPH and lead, respectively. The hot spot excavation also targets removal of all known isolated areas contaminated with arsenic at concentrations greater than its PRG value of 12 mg/kg. Finally, the excavations are also biased towards areas of known contaminant sources (e.g., Service Track Area, service track south of the Diesel Shop, etc.). It is estimated that approximately 25,400 cubic yards of contaminated soil would be removed from the project site as a part of this task. The contaminated soil would be managed via disposal at an off-site facility. A field scientist would be present on-site and work with the excavation subcontractors to confirm the appropriate excavation depths.

The contaminated soil would be excavated using standard earthmoving equipment such as backhoes and front-end loaders. Excavated soil would be placed into stockpiles located adjacent to the stockpiling areas in the vicinity of each target excavation area until characterization and disposal arrangements are completed. Stockpiled soil would be limited to approximately 500 cubic yards in size and placed on and covered with plastic sheeting when not actively being worked on and at the end of each workday. Sandbags or similar means would be used to keep the plastic sheeting in place. Engineering controls would be implemented to prevent runoff from the stockpiles in the unlikely events of precipitation. Excavated soil would be sampled and segregated based on sampling results into three separate stockpiles: i) potentially reusable stockpile, ii) soil potentially requiring disposal as a Resource Conservation and Recovery Act (RCRA)-hazardous waste; and iii) soil potentially requiring disposal as a California-hazardous (non-RCRA) waste. Hazardous waste is proposed for off-site disposal transported by rail (on gondola cars) to the ECDC disposal facility in East Carbon, Utah.

Various engineering control measures would be implemented before, during, and/or after the aforementioned remedial activities. Such measures would be used to address issues associated with the potential generation of airborne dust, storm water runoff, increased areal trafficking, and cross contamination. Upwind/downwind perimeter air monitoring activities would be conducted in the work areas and their immediate vicinity to verify and document the effectiveness of dust suppression measures in conformance with local, state, and federal regulations.

The excavation phase is anticipated to occur over an eight week period.

4. Site Restoration – Once confirmation soil sampling has been completed, the excavation areas would be backfilled. Each excavation would be backfilled with clean fill from an off-site or on-site source. Fill would typically be placed in 6-inch lifts and compacted. The backfilling process would continue until the desired grade for project site redevelopment is accomplished. It is anticipated that the transportation of the clean backfill materials (if needed) would occur via truck and from a local supplier. A compaction report would be submitted to the City of Los Angeles’ Department of Building and Safety in accordance to the grading permit. The site restoration phase is anticipated to take approximately four weeks.
5. Installation of Deep Soil Remediation Systems (as appropriate) – This would consist of: installation of a passive bioventing system; reinstallation and operation (depending on the results of the Data Gaps Investigation [Item 1]) of the soil vapor extraction system (VES) in Area 3 of the site; and construction of a sub-slab venting system underneath future building foundations. Several types of vadose Zone (upper zone of soil with no groundwater) wells (as appropriate) will be installed as part of this proposed project based primarily on the Data Gaps Investigation (Item 1) to be used for these future remedial systems. Bioventing wells would be installed to support a passive soil bioventing system to be installed and operated under future development of the site in areas where elevated concentrations of petroleum hydrocarbons are present in the deep vadose zone. Bioventing is a process of stimulating the natural in situ biodegradation of contaminants in soil by providing air or oxygen to existing soil microorganisms. Each bioventing well would be completed below the building slab vapor barrier and connected via sub-slab conveyance piping that connects each bioventing well to vaults or manholes, which would be located outside of the footprint of the buildings. A soil vapor extraction system (VES) consisting of vadose zone wells, pipelines, extraction blower, and off-gas treatment system would be installed and operated at Area 3 under future development of the site to mitigate any residual VOCs. A permit to construct and a permit to operate would be obtained from SCAQMD prior to installation and operation of the VES. A sub-slab venting system with a vapor barrier membrane would also be installed and operated under future development of the site, which would collect any soil gas that could develop underneath the future cap. The sub-slab passive venting system would typically consist of sub-slab perforated pipes that would be placed in collection trenches constructed beneath the concrete floor and the vapor barrier liner or membrane. Horizontal vapor probes would be placed below and above the membrane and terminate in vaults or manholes located outside the building footprints to allow periodic monitoring of concentrations and vapor pressure. Each set of horizontal pipes would be connected to a main header point that would run up along the outer building wall to exhaust pipes (vent risers) that allow atmospheric discharge of soil vapor and prevent vapor intrusion into the buildings. If an active mitigation system is desired or needed (based on monitoring results), the VES blower would be connected to the exhaust pipe(s) to provide continuous evacuation of the sub-slab vapor. It is possible that the installation of these systems may be conducted as part of future building development. This phase is anticipated to occur over a five month period, if all the systems are installed sequentially.

6. Remediation Systems Operations & Maintenance and Groundwater Monitoring – Once the VES is fully tested and optimized, periodic operations & maintenance (O&M) visits (typically weekly) would be conducted to check system functionality, sampling of soil gas VOCs, and other monitoring and maintenance activities. Once installed, the passive bioventing system would require very little maintenance and monitoring, which would be combined with the VES O&M visits. Vapor monitoring and/or sampling would be conducted on a periodic basis (typically semi-annual basis) from the sampling ports or the vapor probes above and below the membrane to verify the effectiveness of the sub-slab venting system. Periodic groundwater monitoring would be conducted in the upgradient, downgradient, and central portions of the site post-development as part of the remedial activities. Upgradient and on-site groundwater monitoring would be performed to evaluate the risks of vapor intrusion into the future buildings. Results from the downgradient monitoring would be used to determine the potential for off-site migration of VOCs in the groundwater. To accomplish the aforementioned objectives, up to six wells, two located in each of the upgradient, downgradient, and the central portions of the project site, post-development, would be monitored using the methodology employed in the current annual groundwater sampling program. As described in the FS, the frequency of groundwater monitoring would be quarterly for the first two years (following capping/post development), semiannually between 3 and 5 years, and annually between 6 and 30 years. A combination of existing and new wells would likely be used for groundwater monitoring. Any new groundwater monitoring wells would be installed as part of future site/building development and located outside of building footprints to prevent penetrations of the sub-slab vapor barrier and prevent access issues to the monitoring wells. The exact location of new monitoring wells would be determined once site development plans are finalized and would be subject to DTSC approval. A passive free-product recovery system would also be installed at W-27 for removal of free-product that has historically been detected at this well.

As mentioned previously, some or all of the wells and other equipment associated with the passive bioventing, VES, and sub-slab venting systems described under Task 5 may be installed as part of the future building development. Final development of the site is unknown at this time; therefore future development (construction and operation) of the site would be conducted in the future with a project-specific environmental document in accordance with the California Environmental Quality Act. However, the activities under Task 5 are analyzed under this proposed project. Additionally, as part of the future development of the site, a land use covenant and groundwater use restriction would be prepared in coordination and oversight of DTSC to minimize the potential...
for human exposure and to protect the integrity of the implemented remedy.

ENVIRONMENTAL IMPACT ANALYSIS:

1. Aesthetics

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil, loading excavated soils onto dump trucks for on-site management and onto gondola cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The project site was formerly used for freight operations and other maintenance activities. Building foundations and railroad tracks are located within the project site, which is a topographically flat area. The visual environment of the project vicinity is characterized primarily by open space, light industrial facilities and transportation infrastructure, and residential housing. Approximately 730 acres of park lands and open spaces exist within a two mile radius of the project site, including the Rio de Los Angeles State Park, which abuts the project site to the northeast. The 600-acre Elysian Park, the second largest park in Los Angeles County, is located across the Los Angeles River southwest of the project site.

Analysis as to whether or not project activities would:

a. Have a substantial adverse effect on a scenic vista.

Impact Analysis:

A scenic vista generally provides focal views of objects, settings, or features of visual interest; or panoramic views of large geographic areas of scenic quality, primarily from a given vantage point. A significant impact may occur if the proposed project introduced incompatible visual elements within a field of view containing a scenic vista or substantially altered a view of a scenic vista. The project site is in a topographically flat area between the hills of Mount Washington (towards the east) and Elysian Park (towards the west). The Northeast Los Angeles Community Plan does not delineate or designate any specific views as scenic vistas within the project area. The project site is visible from many surrounding vantage points, including Mount Washington and Elysian Park. However, the project site is a former rail yard which has distinct features (such as the South Turntable, surface paving and foundations associated with the former Diesel Shop and other site buildings, and a rail spur). Although there are no delineated or designated scenic vistas within the project area, implementation of the proposed project would result in a temporary change to the visual environment due to the trucks, trailers, portable tanks, and construction equipment on-site during remedial activities at the project site. In addition, material would be temporarily stockpiled at the project site during excavation and prior to off-site removal or on-site reuse of soil. Remedial activities are expected to be performed over a limited duration (approximately 10 month period) and are not expected to have a long-term adverse effect on the visual environment or on a scenic vista. Operation consists of the operation and maintenance associated with the remediation systems and ongoing groundwater monitoring activities. Once installed, the passive bioventing system (which would consist mostly of below ground elements) would require very little maintenance and monitoring. If VES is needed and/or if the passive sub-slab venting system needs or is desired to be active (based on monitoring results), a VES blower and off-gas treatment system (carbon vessels) would be connected to VES well(s) and/or the exhaust pipe(s) of the sub-slab venting system to provide continuous evacuation of the subsurface and/or sub-slab vapors. This blower and carbon vessels would be above-ground and enclosed within a small structure that would be landscaped to not negatively impact the visual environment of the site. Operation and maintenance activities associated with VES and sub-slab venting system will require weekly routine visits consisting of one or two people with a pick-up truck and occasional non-routine maintenance (two to four times year for carbon changeout). These activities would not cause a long-term adverse effect on the visual environment. Ongoing groundwater monitoring
activities would consist of approximately two pick-up trucks and downhole submersible sampling pumps to initially occur on a quarterly basis (four times a year) for approximately two to three days each sampling event, which would not cause a long-term adverse effect on the visual environment. Therefore, a less than significant impact to a scenic vista would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

b. Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings and historic buildings within a state scenic highway.

Impact Analysis:

The proposed project is not along or near a designated California Scenic Highway or locally designated scenic highway. In addition, no scenic resources such as trees, rock outcroppings or historic buildings are in the project area. The nearest officially designated state scenic highway is approximately nine miles northeast of the proposed project (State Highway 2, from approximately three miles north of Interstate 210 in La Cañada to the San Bernardino County Line). There are no direct views to or from a scenic highway associated with the project site. Therefore, implementation of the proposed project would not substantially damage scenic resources within a state scenic highway; as such, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

c. Substantially degrade the existing visual character or quality of the site and its surroundings.

Impact Analysis:

A significant impact may occur if the proposed project introduces incompatible visual elements to the project site or visual elements that would be incompatible with the character of the area surrounding the project site. As noted previously, the project activities would result in a temporary change to the visual environment at the project site due to the staging of materials and equipment during the removal of contaminated soil and site restoration. Additionally, construction traffic in the vicinity of the project site may increase and result in a temporary, short-term visual impact. However, the vicinity of the project site is highly urbanized and the impacts on aesthetic resources from construction activities, which are temporary and short-term and would not be considered significant. Therefore, remedial activities would not substantially degrade the existing visual character or quality of the project site and its surroundings. Operation consists of the operation and maintenance associated with the remediation systems and ongoing groundwater monitoring activities. Once installed, the passive bioventing system (which would consist mostly of below ground elements) would require very little maintenance and monitoring. If VES is needed and/or if the passive sub-slab venting system needs or is desired to be active (based on monitoring results), a VES blower and associated off-gas treatment system (carbon vessels) would be connected to VES wells and/or the exhaust pipe(s) of the sub-slab venting system to provide continuous evacuation of the subsurface and/or sub-slab vapors. This blower and carbon vessels would be above-ground and enclosed within a small structure that would be landscaped to not negatively impact the visual environment of the site. Operation and maintenance activities associated with VES and sub-slab venting system will require weekly routine visits consisting of one or two people with a pick-up truck and occasional non-routine maintenance (two to four times year for carbon changeout). Ongoing groundwater monitoring activities would consist of approximately two pickup trucks and downhole submersible sampling pumps to initially occur on a quarterly basis (four times a year) for approximately two to three days each sampling event. Therefore, a less than significant impact on the existing visual character or quality of the project site and the surrounding area would occur from the implementation of the proposed project.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact
d. Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area.

Impact Analysis:

A significant impact would occur if the proposed project caused a substantial increase in ambient illumination levels beyond the property line or caused new lighting to spill-over onto light-sensitive land uses such as residential, some commercial and institutional uses that require minimum illumination for proper function, and natural areas. Existing industrial development and open space is the main source of light surrounding the project site. Remedial activities associated with the proposed project would be conducted during daylight hours only and do not involve the use of lighting. The temporary staging of construction equipment on-site may result in the short-term sources of glare. The duration of remedial activities is not expected to exceed an estimated time period of approximately 10 months.

Operation consists of the operation and maintenance associated with the remediation systems and ongoing groundwater monitoring activities. If VES is needed and/or if the passive sub-slab venting system needs or is desired to be active (based on monitoring results), a VES blower and associated off-gas treatment system (carbon vessels) would be connected to VES wells and/or the exhaust pipe(s) of the sub-slab venting system to provide continuous evacuation of the subsurface and/or sub-slab vapors. This blower and carbon vessels would be above-ground and enclosed within a small structure that could have security lighting. However, if lighting is required on the enclosure, it would be directed inward and downward and not shine light beyond the footprint of the structure. Operation and maintenance activities associated with VES and sub-slab venting system will require weekly routine visits consisting of one or two people with a pick-up truck and occasional non-routine maintenance (two to four times year for carbon changeout) all of which would occur during daytime hours only. Ongoing groundwater monitoring would occur during daytime hours only and for only a two to three day period per event. Therefore, no long-term sources of light or glare would result from operation of the proposed project. Therefore, a less than significant impact relative to light and glare would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

References Used:

California Department of Transportation. California Scenic Highway Mapping System. Available at: www.dot.ca.gov/hq/LandArch/scenic_highways/index for Los Angeles County.

2. Agricultural Resources

Project Activities Likely to Create an Impact:

- Excavation of soil
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

Historically, facilities located within the project site were used for rail operations and maintenance activities. There are no Williamson Act lands in mainland Los Angeles County. Previous agricultural use has not been documented at the project site nor does it currently support prime farmland or farmland of statewide importance.

Analysis as to whether or not project activities would:

a. Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland) as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use.
Impact Analysis:

No such farmland designations are present on-site or nearby. Implementation of the proposed project would not affect agricultural land or important farmland. Therefore, no impact to designated prime, unique, or important farmland would occur as a result of project implementation.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

b. Conflict with existing zoning or agriculture use, or Williamson Act contract.

Impact Analysis:

The site is zoned light industrial and activities proposed in the RAP would not conflict with the existing zoning or land use, nor expand into adjacent properties. As mentioned previously, a Williamson Act contract does not exist for this site. Therefore, no impact from implementation of the proposed project would occur to existing zoning or agriculture use, or a Williamson Act contract.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

c. Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural uses.

Impact Analysis:

As described above, the proposed project would not include any changes in the existing environment that could, due to location or nature, result in conversion of farmland to non-agricultural uses. Therefore, no impact from the implementation of the proposed project would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

References Used:

3. Air Quality

Project Activities Likely to Create an Impact:

- On-site equipment emissions from removal of existing concrete, excavation, backfilling, and grading
- Fugitive dust emissions from grading, material movement, and vehicle travel
- Off-site disposal of soil and demolition debris
- Transport of on-site soil and/or off-site import fill for backfilling of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:
The project site is located within jurisdiction of the South Coast Air Quality Management District (SCAQMD). The SCAQMD is responsible for enforcing, within its jurisdiction, ambient air quality standards established by the California Air Resources Board (CARB) and the U.S. Environmental Protection Agency (EPA). The California Clean Air Act, signed into law in 1974, established the California Ambient Air Quality Standards (CAAAQS); all areas of the state are required to achieve and maintain the CAAAQS by the earliest practicable date. Regions of the state that have not met one or more of the CAAAQS are known as nonattainment areas, while regions that meet the CAAAQS are known as attainment areas. The air pollutants regulated by the SCAQMD are lead (Pb), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), inhalable particulate matter (PM₁₀), fine particulate matter (PM₂.₅), hydrogen sulfide (H₂S), vinyl chloride, sulfates, and visibility reducing particles. The proposed project would be located in the Los Angeles County sub-area of the South Coast Air Basin (SCAB). Los Angeles County is designated as a state nonattainment area for O₃, PM₂.₅, PM₁₀, NO₂, and lead; and an attainment or unclassified area for carbon monoxide (CO), sulfur dioxide (SO₂), sulfates, hydrogen sulfide, and visibility reducing particles.

Analysis as to whether or not project activities would:

a. Conflict with or obstruct implementation of the applicable air quality plan.

Impact Analysis:

The SCAQMD, in association with CARB and the Southern California Association of Governments (SCAG), is responsible for preparing the Air Quality Management Plan (AQMP) that details how the region intends to attain or maintain the state and federal ambient air quality standards. The Final 2012 AQMP describes the SCAQMD's plan to attain the federal PM₂.₅ by 2014 and to continue improving O₃ levels. Proposed control measures include reducing PM₂.₅ and NOx emissions from on- and off-road vehicle engines and locomotives. In 2007, CARB adopted a regulation to reduce diesel particulate matter and nitrogen oxides (NOx) emissions from in-use (existing) off-road heavy-duty diesel vehicles. The 2012 AQMP proposes to carry forward control measures for ozone presented in the Final 2007 AQMP, which includes requiring the use of cleaner (as compared to "baseline") off-road equipment.

The City of Los Angeles adopted an Air Quality Element (1992) that is part of the General Plan. Goals include reducing air pollutants consistent with the AQMP and, in particular, reducing particulate matter emissions from unpaved areas, parking lots, and construction sites. The SCAQMD regulations include standards for fugitive dust emissions and particulate matter emissions, and the proposed project would incorporate requirements of the SCAQMD Rule 403 (Fugitive Dust Abatement) into construction contracts. Standard dust abatement measures could include the following elements: water or otherwise stabilize soils, cover haul trucks, employ speed limits on unpaved roads, minimize vegetation cleaning, and revegetate disturbed areas post-construction. The project may be classified as a "Large Operation" under Rule 403 and may have specific control requirements. SCAQMD would be consulted before starting any dust generating activities. All construction activities for the proposed project would be compliant with Rule 403.

Any construction equipment at the project site would operate in compliance with state law and as shown in Table 1 and 2 below, total and onsite construction emissions do not exceed the SCAQMD significance thresholds or the Localized Significance Thresholds (LSTs). As a result, the proposed project would not conflict with or obstruct implementation of SCAQMD regulations and therefore would have a less than significant impact.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

b. Violate any air quality standard or contribute substantially to an existing or projected air quality violation.

Impact Analysis:

The Los Angeles County is designated as a state nonattainment area for O₃, PM₂.₅, PM₁₀, NO₂, and lead; and an attainment or unclassified area for CO, SO₂, sulfates, hydrogen sulfide, and visibility reducing particles.

SCAQMD Mass Daily Emissions Thresholds

The SCAQMD publishes thresholds of significance for these pollutants. If the proposed project results in substantial emissions that would exceed the significance criteria, then a significant impact would occur. Table 1 summarizes the mass daily thresholds for construction and operation.
The California Emissions Estimator Model (CaIEEMod), Version 2013.2, was used to estimate criteria and precursor pollutant emissions (reactive organic gases [ROGs], NOx, CO, SO2, PM10, and PM2.5). For the purposes of this analysis, it was assumed ROGs were equivalent to VOCs. The analysis does not estimate lead emissions because no major sources of lead would occur at the site. CaIEEMod is a statewide land use emissions computer model that estimates construction and operational emissions from a variety of land use projects. CaIEEMod also contains mitigation measures to reduce criteria pollutant emissions, if necessary.

Default CaIEEMod inputs were updated with project-specific data. Construction emissions include heavy equipment, vendor and haul trips, construction worker commuting trips, and fugitive dust from grading and vehicle travel. Construction activities were estimated for removal of existing concrete, excavation, and grading. Construction activities would be conducted consistent with SCAQMD Rule 403, which provides reasonable precautions to minimize fugitive dust emissions. Rail emissions from offsite hauling of soil were estimated based on information provided by Union Pacific Railroad Company and EPA guidance on calculating emission factors for locomotives.

Table 2 summarizes maximum daily emissions that would occur from construction activities. Emissions calculations and CaIEEMod output are presented in Appendix A.

Table 1. SCAQMD Mass Daily Pollutant Emission Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>100 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>VOC</td>
<td>75 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>PM10</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>PM2.5</td>
<td>55 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>SOx</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>CO</td>
<td>550 lbs/day</td>
<td>550 lbs/day</td>
</tr>
<tr>
<td>Lead</td>
<td>3 lbs/day</td>
<td>3 lbs/day</td>
</tr>
</tbody>
</table>

Source: SCAQMD, 2011b.

Key: CO = carbon monoxide; lbs/day = pounds per day; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; SCAQMD = South Coast Air Quality Management District; SOx = sulfur oxides; VOC = volatile organic compounds.

Table 2. Construction Emissions Summary – Criteria Pollutants

<table>
<thead>
<tr>
<th>Phase</th>
<th>Maximum Daily Emissions (pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Data Gaps Investigation Total</td>
<td></td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>3</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>1</td>
</tr>
<tr>
<td>Removing Existing Concrete Total</td>
<td>18</td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>6</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>12</td>
</tr>
<tr>
<td>Excavation Total</td>
<td>21</td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>11</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>1</td>
</tr>
<tr>
<td>Backfill/Grading Total</td>
<td>53</td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>18</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>35</td>
</tr>
<tr>
<td>Well (VES, Bloventing, & Groundwater Monitoring) Installation Total</td>
<td>5</td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>4</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>1</td>
</tr>
<tr>
<td>VES, Bloventing, & Sub-slab Venting System Installation Total</td>
<td>46</td>
</tr>
<tr>
<td>Construction Equipment Exhaust</td>
<td>43</td>
</tr>
<tr>
<td>On-site Fugitive Dust</td>
<td>-</td>
</tr>
<tr>
<td>Off-site Vehicles</td>
<td>3</td>
</tr>
</tbody>
</table>
Development of the site would not occur under this project. Therefore, operational emissions would be limited to potential emissions of volatile organic compounds (VOC) from the VES exhaust and potentially from sub-slab venting (if these operations were turned into active venting). As mentioned previously, possible reinstallation and operation of the VES in Area 3 including wells, piping, and off-gas treatment system will be based on the results of the data gaps investigation/sol gas survey (Item 1). However, for purposes of estimating operational emissions, soil gas data from previous VES operations at the project site (Area 3) was used to estimate potential emissions from the VES wells. Assuming that two vapor-phase granular activated carbon vessels in series (similar to previous site operations) would provide 99 percent of VOC control, it was estimated that 0.44 lb/day of VOC could be emitted from the treated exhaust of the VES. Calculations of VOC emissions are provided in Appendix A. A permit to construct and a permit to operate will be obtained from SCAQMD prior to installation and operation of the VES. The carbon vessels would meet the Best Available Control Technology requirement for air pollution control. Compliance with the permit limit would ensure that the operational emissions do not violate any rules or plans. There will also be vehicle emissions from site visits for the operation and maintenance of the VES, bioventing, and sub-slab venting and groundwater monitoring. Vehicle emissions were calculated using emission factors from EMFAC2011. Operational emissions are summarized in Table 3.

Table 3. Operational Emissions Summary – Criteria Pollutants

<table>
<thead>
<tr>
<th>Phase</th>
<th>Maximum Daily Emissions (pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Vehicles</td>
<td>4</td>
</tr>
<tr>
<td>VES Exhaust</td>
<td>-</td>
</tr>
<tr>
<td>Total Maximum Daily Emissions</td>
<td>4</td>
</tr>
<tr>
<td>SCAQMD Operation Threshold</td>
<td>550</td>
</tr>
<tr>
<td>Significant Impact?</td>
<td>No</td>
</tr>
</tbody>
</table>

Key: CO = carbon monoxide; lbs/day = pounds per day; NOx = nitrogen oxides; PM₁₀ = inhalable particulate matter; PM₂.₅ = fine particulate matter; ROC = reactive organic compounds (assume equivalent to volatile organic compounds); SCAQMD = South Coast Air Quality Management District; SOx = sulfur oxides.

As shown in Tables 2 and 3, emissions for all criteria pollutants would be less than the SCAQMD’s significance thresholds for construction and operational emissions, respectively. Mitigation measures would not be required, and the impact would be less than significant.

SCAQMD Localized Significance Thresholds

The SCAQMD developed thresholds for local air quality impacts from construction activity. LSTs are only applicable to the following criteria pollutants: NOx, CO, PM₁₀, and PM₂.₅. LSTs are analogous to National Ambient Air Quality Standards (NAAQS) andCAAQS; pollutant levels below LSTs would not necessarily be expected to violate the NAAQS or CAAQS. LSTs consider ambient concentrations of pollutants for each source receptor area and distances to the nearest sensitive receptor.

SCAQMD recommends using the equipment type to determine the maximum daily disturbed acreage when analyzing air emissions with CalEEMod: each crawler tractor, grader, or rubber tired dozer operating at the project site could disturb 0.5 acres per workday; a scraper could disturb one acre per workday. The equipment list for the proposed project assumes that one grader and one dozer would operate during the grading phase, which would indicate that 1 acre would be disturbed per day. The one-acre LSTs were used for this project.

Table 4 summarizes the allowable emissions for construction emissions from a one-acre project located in the Central Los Angeles Source-Receptor Area. LSTs consider ambient concentrations of pollutants for each source receptor area and distances to the nearest sensitive receptor. The closest receptor from the project site boundary is located approximately 150 meters (approximately 492 feet); therefore, the thresholds for 150 meters were scaled from the 100 and 200 meter thresholds.

Table 4. Localized Significance Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1,833 lbs/day</td>
<td>1,833 lbs/day</td>
</tr>
<tr>
<td>NOx</td>
<td>94 lbs/day</td>
<td>94 lbs/day</td>
</tr>
</tbody>
</table>
As described in the SCAQMD's LST Methodology, only on-site emissions, which include fugitive dust and off-road construction equipment, were included in the LST analysis and not off-site mobile emissions from the project (e.g., construction worker commuting). As discussed above, on-site operational emissions consist of a small amount of VOCs. LST are not available for VOCs, therefore an LST analysis was not conducted for the operational emissions. Table 5 summarizes the results of the LST analysis for this proposed project.

<table>
<thead>
<tr>
<th>Table 5. On-site Construction Emissions Summary – Criteria Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>Data Gaps Investigation Total</td>
</tr>
<tr>
<td>Removing Existing Concrete Total</td>
</tr>
<tr>
<td>Excavation Total</td>
</tr>
<tr>
<td>Excavation & Grading Total</td>
</tr>
<tr>
<td>Well (VES, Bioventing, & Groundwater Monitoring)</td>
</tr>
<tr>
<td>Installation Total</td>
</tr>
<tr>
<td>VES, Bioventing, & Sub-slab Venting System Installation Total</td>
</tr>
<tr>
<td>Localized Significance Threshold</td>
</tr>
<tr>
<td>Significant Impact?</td>
</tr>
</tbody>
</table>

Key: CO = carbon monoxide; lbs/day = pounds per day; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; VOC = reactive organic compounds (assume equivalent to volatile organic compounds); SCAQMD = South Coast Air Quality Management District; SOx = sulfur oxides.

As shown in the table, construction emissions would not exceed the LSTs, and localized peak daily emissions would be less than significant.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

- c. Result in cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

Impact Analysis:

As described above, total daily construction and operational emissions are below the significance criteria. The proposed project would have a less than significant impact and therefore would not be cumulatively considerable.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

d. Expose sensitive receptors to substantial pollutant concentrations.

Impact Analysis:
Sensitive receptors include residences, recreational areas, schools, hospitals and day care centers. The nearest hospital is approximately 2.3 miles northwest of the project site. The Central Los Angeles High School No. 13 is the nearest school to the project site, located in Parcel F (see Figure 1). Glassell Elementary School is also located 2,000 feet northeast of the project site. The nearest residences are located 825 feet southwest of the project site. The recreational users of Rio de Los Angeles State Park are located immediately adjacent to the project site (to the east). The proposed project is not expected to expose off-site sensitive receptors to substantial pollutant concentrations because standard construction practices, such as utilizing a water truck and covering of soil stockpiles, would be used for dust suppression and air emissions would be limited in scale and duration. The proposed project would permanently remove soil in identified hot spot areas.

A Human Health Risk Assessment prepared for the project site concluded that unacceptable risks were present at the project site for construction workers. The most significant contributors to the risk are arsenic, 1,1,2-trichloroethane, 1,2-dibromoethane, hexachlorobenzene, carcinogenic polycyclic aromatic hydrocarbons, and semi-volatile organic compounds. Dust control measures (i.e. use of water trucks) are expected to reduce airborne metal concentrations to acceptable levels for workers at the project site, which is the Cal/OSHA's permissible exposure limits (PELs) of 50 milligrams per cubic meter (mg/m3) of total particulates and PEL of 50 micrograms per cubic meter (μg/m3) for occupational lead (Per the RAP, lead was selected as the airborne analyte for monitoring because other site contaminants are substantially more unlikely to become airborne risks to site workers). In addition, an element of the proposed project includes performing air monitoring to monitor work area conditions and property boundary upwind and downwind conditions. Furthermore, workers would be provided with personal protective equipment to prevent dermal and inhalation exposure during excavation, treatment, and soil handling (CDM Smith, 2012). Therefore, a less than significant impact to sensitive receptors would result from implementation of the proposed project.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

e. Create objectionable odors affecting a substantial number of people.

Impact Analysis:

Construction activities may generate detectable odors in the immediate project vicinity resulting from the use of diesel powered vehicles and equipment. Operations are not anticipated to generate detectable odors. The nearest people to the project site are associated with the adjacent parcels/uses to the east: the Central Los Angeles High School No. 13 (located in Parcel F) is just northeast of the project site boundary, the Rio de Los Angeles State Park is located immediately east of the project site, along with the Federal Express operations. The nearest residences are located approximately 825 feet southwest of the project site. During construction activities associated with the proposed project, sources of odor are mostly associated with diesel emissions from construction equipment. These odors would be temporary and localized and would not affect a substantial number of people. Nonetheless, applicable Best Management Practices (BMPs) such as those in SCAQMD Rule 431 (Diesel Equipment) would, in addition to minimizing air quality impacts, also help minimize potential construction odors. Air emissions, including odors, during operation are anticipated to be absent or minimal. Therefore, implementation of the proposed project would result in a less than significant impact relative to objectionable odors.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

f. Result in human exposure to Naturally Occurring Asbestos (see also Geology and Soils, f.).

Impact Analysis:

The project site is a former railroad yard and based on the California Department of Conservation map of areas of naturally occurring asbestos is not located in an area where naturally occurring asbestos is likely to be present. Therefore, the proposed project would not result in human exposure to naturally occurring asbestos; as such, no impact would occur.

Conclusion:
Potentially Significant Impact
Potentially Significant Unless Mitigated
Less Than Significant Impact
No Impact

References Used:

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil, loading excavated soils onto dump trucks for on-site management and onto gondola cars/rail cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The Los Angeles River forms the western boundary of the Taylor Yard Complex. The River flows to the south-southeast. This portion of the Los Angeles River contiguous to the Taylor Yard Complex has concrete-lined banks, but the riverbed supports vegetation and consists of soft-bottom sediment, cobble, boulders, and gravel. The project site is separated from the River by a barbed-wire fence and approximately 150 lateral feet of concrete.

Various city and state parks exist in the area surrounding the project site, although, with the exception of the Rio de Los Angeles State Park, all parks are separated from the rail yard by housing, industrial facilities, interstates, and local surface streets. The northern and eastern parcel of the former Taylor Yard Complex is the Rio de Los Angeles State Park which attracts wildlife and is utilized for recreational use. The Rio de Los Angeles State Park is intended to act as a wildlife corridor for the adjacent Los Angeles River, which is also considered a sensitive ecological area. A biological characterization and report was prepared in accordance with the DTSC's Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, based on site visits conducted on 10 November 2005 and 7 July 2006. A summary of the result of the biological characterization is in Appendix B of this Initial Study:

Wildlife and vegetation listed as species of special concern, sensitive species, or protected species by the State of California were considered sensitive species. The County of Los Angeles has 138 listed plant species considered rare and endangered by the federal and state governments and the California Native Plant Society. None of these species were identified during the site visits as existing or likely to exist at the project site due to the lack of quality habitat within the project site and the surrounding area. In addition, although there are several sensitive bird species known to exist along the lower portion of the Los Angeles River, they are not likely to use the project site for foraging, nesting, or as a movement corridor due to the isolation of the area from native open space and the poor habitat quality.

Vegetation throughout the major portion of the project site is sparse, widely scattered, and primarily composed of coastal sage scrub species and non-native, ruderal vegetation. Rioarian marsh and woodlands exists within the Los Angeles River stream channel adjacent to the Taylor Yard Complex. There are no vegetative associations currently present at the project site, and there is no indication of a disturbed riparian woodland or freshwater marsh within the boundary of the project site. The largest area of vegetative cover exists at the northern boundary of the complex near the north access gate. This area of less than one acre is primarily composed of Mexican fan palm (Washingtonia robusta), California goldenbush (Ericameria ericoides), and Rabbit’s foot grass (Polypogon monspeliensis). Coastal sage scrub species were identified at the project site, primarily in the buffer zone area adjacent to the Los Angeles River. A ten-foot band of vegetation, herein referred to as the buffer zone, exists between the eastern edge of the concrete-lining of the Los Angeles River and a maintenance road, which is part of the project site. The buffer vegetation is comprised primarily of coastal sage scrub species and non-native exotic species.

Sightings of wildlife species were noted at the Taylor Yard Complex during the site visits. Avian species such as American kestrels (Falco sparverius), Brewer’s blackbird (Euphagus cyanocephalus), American crow (Corvus brachyrhynchos), osprey (Pandion haliaetus), black phoebe (Sayornis nigricans), and mourning dove (Zenaida macroura), were observed at the rail yard, perched on utility poles and power lines. Stilts, coots, teal, mallards, and double-crested cormorants (Phalacrocorax auritus) were observed in the portion of the Los Angeles River adjacent to the project site during the site visits, but they were not present at the project site. The limited distribution of food sources and cover at the project site indicates that habitat resources are low and bird species are not likely to select the project site for breeding or foraging. Open spaces with more attractive habitat to bird species are available less than one mile in all directions, and the 600-acre Elysian Park is located approximately 0.3 mile to the south of Taylor Yard Complex.

Reptiles or amphibians were not observed at the site, and no signs (e.g. tracks, burrows) indicated their presence. Several invertebrate species were observed during the July site visit to the Taylor Yard Complex; however, no
Invertebrates were observed during the November site visit. Terrestrial invertebrates including arthropods and annelids are potentially present at the project site, although none were identified during the site visit.

Although, only one mammal, the California ground squirrel (Spermophilus beecheyi), was observed at the project site, two coyotes (Canis latrans) were observed crossing upstream of the project site. Species previously identified at the adjacent parcel D include Botta’s pocket gopher (Thomomys bottae), striped skunk (Mephitis mephitis), coyote, black rat (Rattus rattus), and house mouse (Mus musculus). These species are included as potential ecological receptors at the project site.

In general, the Taylor Yard complex (including the project site) supports fragmented ruderal habitat that has been heavily disturbed and degraded by railroad operation and maintenance activities. The human impacts caused by building construction, grading, and railroad operations include habitat destruction, wildlife displacement, hydrologic modification, soil contamination, and water quality degradation. These impacts have dramatically impacted the habitat and associated wildlife in this upland area.

Analysis as to whether or not project activities would:

a. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service.

Impact Analysis:

Sensitive wildlife are those animal species, which are candidates, proposed, or listed as threatened or endangered by the USFWS or the California Department of Fish and Wildlife (formerly known as the California Department of Fish and Game), and those animals that are considered species of concern or are listed as protected or fully protected by the state. Due to the past industrial uses on the project site, there are no candidate, sensitive or special status species known to occur at the project site. Since no wetland conditions are present within the project site, no aquatic plant life would be impacted. However, several sensitive plant and bird species are known to occur along the lower Los Angeles River. All are thought to be locally extirpated due to extensive development in the region. As noted above, no special status candidate, sensitive or special species have been identified on the project site. The activities associated with the proposed project would occur entirely on-site and would therefore not have the potential to affect any sensitive or protected species outside of the project site. No habitat would be modified, and the urban land use currently on-site would continue to exist. Therefore, the proposed project would not have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service; as such, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

b. Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service.

Impact Analysis:

As noted above, the project site does not contain any riparian habitat, sensitive natural communities, or sensitive species. The project site and its surroundings are highly urbanized. The activities associated with the proposed project would occur entirely on-site and would therefore not have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife (formerly known as the California Department of Fish and Game) or U.S. Fish and Wildlife Service; as such, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact
c. Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.

Impact Analysis:

There are no streams or wetlands within the footprint of the project site. The Los Angeles River forms the western boundary of the project site. The River flows to the south-southeast. This portion of the Los Angeles River contiguous to the project site has concrete-lined banks, but the riverbed supports vegetation and consists of soft-bottom sediments, cobble, boulders, and gravel. The proposed project would involve the excavation and backfilling of soils within an existing urbanized area. The excavation activities would be limited to the project site and construction BMPs would be undertaken to control runoff and erosion from any earthmoving or backfilling activities such that no substantial adverse effect would occur to the Los Angeles River. Once the project site has been restored, operation would consist of the operation and maintenance of the remediation systems and ongoing groundwater monitoring activities, which would have no or minimal affect on the project site. Therefore, the proposed project would not have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means; as such, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☒ No Impact

d. Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites.

Impact Analysis:

No fish or wildlife species are known to reside or migrate within the project site and no areas within the project site are known to contain any migratory wildlife corridors, as the project site is disturbed and lacks native habitat and vegetation. Plant and wildlife species that currently inhabit the project site are highly mobile species capable of movement through urban and disturbed lands. Any potential habitat connections are highly constrained due to urban surroundings. In addition, the excavation activities and disposal of contaminated soils would take place outside potential wildlife corridors associated with the Los Angeles River. Construction would result in short-term activities that would not alter the current, limited functionality of the connections to the west and south along the Los Angeles River. Once the project site has been restored, operation would consist of the operation and maintenance of the remediation systems and ongoing groundwater monitoring activities, which would have no or minimal affect on the project site. Therefore, the proposed project would not interfere substantially or in any way with the migration, movement, or use of wildlife nursery sites by native fish or wildlife species. As such, no impacts would occur with implementation of the proposed project.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

e. Conflict with local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance.

Impact Analysis:

The City of Los Angeles has an oak tree ordinance that prohibits the removal or destruction of oak trees without a permit. There are no oak trees on the project site; therefore, the proposed project activities would not conflict with local policies or ordinances protecting trees, and no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
f. Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

Impact Analysis:

The project site is not included in any adopted Habitat Conservation Plan, Natural Communities Conservation Plan, or other approved plan. Therefore, the proposed project would not conflict with the provisions of any adopted conservation plans; as such, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

References Used:

5. Cultural Resources

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation of soil
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)

Description of Baseline Environmental Conditions:

Dating back to 1888, Taylor Yard was a former freight rail switching yard and maintenance facility. For most of that time it was the major rail hub in Los Angeles and supported the development of industrial properties and working class residential communities near the project site. The completion of a modern freight yard in the city of Colton in 1973 reduced the importance of Taylor Yard as a rail center, but some maintenance operations remain. No historical or archaeological resources are recorded at the project site. However, it is possible that historic features of the railroad yard might be still buried, although intact features would be unlikely. There are two cultural resources within a 0.5-mile radius of the project site boundaries. The Dorris Place Elementary School Administration Building, located 0.3 mile south of the project site, is eligible for listing under the California Register of Historical Resource (CRHR) and National Register of Historic Places (NRHP) for its 1922 Romanesque Revival architecture. The Glassell Park Elementary School, located 0.38 mile north of the project site, is designated as a City of Los Angeles Historic-Cultural Monument for its 1923 Spanish Colonial Revival/Art Deco architecture.

Analysis as to whether or not project activities would:

a. Cause a substantial adverse change in the significance of a historical resource as defined in 15064.5.

Impact Analysis:
The project site has been the subject of extensive cultural resource surveys. No historic resources are known to occur on the project site. Due to the extensive rail yard operations that have occurred on project site, it is unlikely that any cultural feature survived or would still exist with any integrity. The two historical resources within half-mile of the project site would not be damaged by the activities associated with the proposed project. Therefore, the proposed project would not cause a substantial adverse change in the significance of a historical resource; as such, no impact would occur.

Conclusion:
- [] Potentially Significant Impact
- [] Potentially Significant Unless Mitigated
- [x] Less Than Significant Impact
- [] No Impact

b. Cause a substantial adverse change in the significance of an archeological resource pursuant to 15064.5.

Impact Analysis:

Excavation and other earth-disturbing activities could impact archaeological sites and paleontological resources. However, the project site is situated on a layer of artificial fill underlain by recent alluvial sediments, which have a low potential for archaeological and paleontological resources. In addition, the project site is heavily disturbed by rail yard activities dating back from 1888 to present; hence no known archaeological resources are anticipated. Many of the proposed ground-disturbing activities would be relatively shallow and would not likely disturb native soils in previously disturbed areas that could contain archaeological resources or be deep enough to affect unknown paleontological resources. If such resources or features are identified during project activities, work in the immediate vicinity would stop until such time as an evaluation by a qualified person (e.g., an archaelogist and/or geologist) can be made. Therefore, the proposed project would not cause a substantial adverse change in the significance of an archaeological or paleontological resource; as such, a less than significant impact would occur.

Conclusion:
- [] Potentially Significant Impact
- [] Potentially Significant Unless Mitigated
- [x] Less Than Significant Impact
- [] No Impact

c. Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

Impact Analysis:

Refer to the response to item a. No paleontological resources are known to occur at the project site. The project site is situated on a layer of artificial fill underlain by recent alluvial sediments, which have a low potential for paleontological resources, and many of the proposed ground-disturbing activities would be relatively shallow and would not likely disturb soils deep enough to affect unknown paleontological resources. In addition, no unique geologic features are located at or adjacent to the project site. Therefore, a less than significant impact to paleontological resources or any unique geologic feature is anticipated to result from project implementation.

Conclusion:
- [] Potentially Significant Impact
- [] Potentially Significant Unless Mitigated
- [x] Less Than Significant Impact
- [] No Impact

d. Disturb any human remains, including those interred outside of formal cemeteries.

Impact Analysis:

Refer to the response to item a. No human remains are known to occur in the project site. However, in the event of an inadvertent discovery or recognition of human remains uncovered during soil disturbance activities, all excavation activities in the immediate area shall cease until such time as an evaluation by a qualified person (e.g., an archaeologist) can be made and the appropriate authorities shall be contacted. In the event that human remains are discovered, there shall be no disposition of such human remains, other than in accordance with the procedures and requirements set forth in California Health and Safety Code Section 7050.5 and Public Resources Code Section 7060.5 and California Environmental Protection Agency Department of Toxic Substances Control.
50973.98. These code provisions require notification of the County Coroner and the Native American Heritage Commission, who in turn must notify those persons believed to be most likely descended from the deceased Native American for appropriate disposition of the remains. Excavation or disturbance may continue in other areas of the project site that are not reasonably suspected to overlie adjacent remains or archaeological resources. Therefore, a less than significant impact to human remains is anticipated to result from project implementation.

Conclusion:
- Potentially Significant: Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

References Used:

City of Los Angeles. ZIMAS. Available here: http://zimas.lacity.org/

6. Geology and Soils

Project Activities Likely to Create an Impact:
- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil; loading excavated soils onto dump trucks for on-site management and onto gondola cars/rail cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The project site is located at the northern edge of the Los Angeles coastal plain and lies within the Transverse Range Geomorphic Province, which has a unique east-west orientation. The project site is underlain by up to 160 feet of unconsolidated alluvial sediments. However, the project site is within an urban area that has been altered by grading or imported fill. Fill material range from clayey silt and silty clay to angular gravel with sand. Underneath the fill, the geology of the project site consists of sands, silty sands with gravel, and some clayey sands.

The soils at the project site are impacted with lead, arsenic, TPH, VOCs, and SVOCs. The concentration of these soils exceed the EPA Region 9 Regional Screening Levels for industrial soil (RSLs) and VOCs concentrations in soil gas exceed the California Human Health Screening Levels (CHHSLs) for commercial/industrial land uses.

There are two active faults within the immediate vicinity of the project site. The Raymond Fault is located two miles to the northeast, while the Elysian Park Fault lies immediately to the southwest of the project site on the west side of the I-5 freeway. The San Andreas Fault is located approximately 30 miles northeast of the project site and is known to be active. The project site is not within an Alquist-Priolo Special Studies Zone.

Analysis as to whether or not project activities would:
a. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

- **Rupture of a known earthquake fault**, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault. (Refer to Division of Mines and Geology Special Publication 42).

Although active fault lines exist in the vicinity of the project site, risks associated with rupture of a known earthquake fault are minimized through the use of engineering controls. The project would not result in the construction of new structures, but involve removal of contaminated soil followed by site restoration. Additionally, the depths of excavations are limited to 5 feet below ground surface and sidewall sloping and/or shoring, as appropriate and necessary, would be used in soil excavation to minimize the risk of cave-ins. Therefore, the project would not expose people or structures to earthquake fault risks; as such, a less than significant impact would occur.

- **Strong seismic ground shaking.**

The project site is located within the seismically active Southern California region where there are numerous faults of various type and magnitude potential. Severe ground shaking from nearby faults could occur at the project site. As indicated in above, the project site is not located within an Alquist-Priolo Special Study Zone, and thus the potential for hazards associated with strong seismic ground-shaking such as ground surface rupture affecting the project site is considered low. The closest faults are the Raymond and the Elysian Park Faults. Seismic activity along any of the above-mentioned faults could affect the proposed project. The proposed project includes the removal of concrete, excavation and removal of shallow contaminated soil, site restoration (including backfilling and compaction of clean soil), installation of deep soil remediation systems and wells, and ongoing remediation systems operation and maintenance and groundwater monitoring. Proposed activities would follow all applicable building and safety code standards (such as the most recent edition of the California Building Code and the Los Angeles Municipal Code) to limit the probability of occurrence and the severity of consequences from hazards associated with strong seismic ground-shaking such as ground surface rupture. Therefore, the proposed project would not cause strong seismic ground shaking that would expose people or structures to potential substantial adverse effects. Thus, a less than significant impact from seismic ground shaking is anticipated to result from project implementation.

- **Seismic-related ground failure**, including liquefaction.

Liquefaction is characterized by the rapid loss of strength of cohesive soils during large earthquake motions. The project site is located in an area of liquefaction potential. This is due to the high water table and soils conditions under the project site. As required under existing regulations and codes (such as the most recent edition of the California Building Code and the Los Angeles Municipal Code), appropriate stabilization and design methods associated with the proposed project would be implemented to keep potential impacts to less than significant levels. In addition, the proposed project would not include construction of any habitable facilities at the project site and would not increase the chance for liquefaction of soils which would expose people or structures to potential substantial adverse effects; as such, a less than significant impact would occur.

- **Landslides.**

Impact Analysis:

Landslides are unlikely due to the flat topography of the project site. Therefore, there is no anticipated threat of landslides occurring due to project activities, as such, no impact would occur.

Conclusion:

- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- **No Impact**

b. Result in substantial soil erosion or the loss of topsoil.

Impact Analysis:

The project area is relatively flat. Excavation of contaminated soils associated with remedial activities generally would be limited in extent and soils would be subject to potential erosion until construction is complete. Eroded soils could
adversely affect water quality in the river and cause accretion problems downstream. Therefore, a construction Stormwater Pollution Prevention Plan (SWPPP) would be developed that includes BMPs to help control erosion and loss of soil during excavation and site restoration and convey storm water run on away from the project site. The SWPPP would be developed by a Qualified SWPPP Developer (QSD) in accordance with the General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (General Permit), Water Quality Order No. 2012-0006-DWQ (NPDES NO. CAS0000002) adopted by the State Water Resources Control Board (SWRCB). A Notice of Intent (NOI) would be filed with the Los Angeles Regional Water Quality Control Board (LARWQCB) to obtain a Waste Discharge Identification (WDID) number for the project. A copy of the SWPPP, all other appropriate Permit Registration Documents (PRDs), and fees would be submitted to the LARWQCB and the local agency (City of Los Angeles) in advance of beginning the work. All measures outlined in the SWPPP would be implemented by a Qualified SWPPP Practitioner (QSP) or persons trained under the QSP throughout the duration of the project. The operation and maintenance of the remediation systems and ongoing groundwater monitoring activities associated with operation would have no or minimal effect on the project site and would not result in substantial soil erosion or topsoil loss. Therefore, a less than significant impact is anticipated from implementation of the proposed project.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

c. Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on or off-site landslide, lateral spreading, subsidence, liquefaction or collapse.

Impact Analysis:

As described above, there is a potential for liquefaction at the project site and surrounding area. The project site is heavily disturbed and previously operated as a rail yard and maintenance facility. Ground disturbance associated with remedial activities generally would be limited in extent and would not affect soil stability on the project site or surrounding areas as soils are previously disturbed. Site restoration activities would include backfilling and compacting with clean imported soil the excavated area and returning the project site to its current topography, which is relatively flat. Ongoing operation and maintenance of the remediation systems and groundwater monitoring during operation activities would have no or minimal affect on a geologic unit or soil at the project site. Therefore, the proposed project would not result in an off-site landslide, lateral spreading, subsidence, liquefaction or collapse; as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

d. Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property.

Impact Analysis:

The project site is not located on expansive soils. The project site is on alluvium, which is primarily sands and gravels with some silty-sand. All fill material would be graded and compacted in accordance with engineering codes and specifications to avoid settling and expansion. In addition, operation of the proposed project (i.e., ongoing operation and maintenance of the remediation systems and groundwater monitoring) would not involve modification of soils at the project site. Therefore, the proposed project would not create substantial risks to life of property, as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact
e. Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of water.

Impact Analysis:

The proposed project does not involve or require the use of septic tanks or alternative waste water disposal systems. Therefore, the proposed project would not impact soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of water and no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

e. Be located in an area containing naturally-occurring asbestos (see also Air Quality, f.).

Impact Analysis:

Based on the California Department of Conservation map of areas of naturally occurring asbestos, the project site is not located in an area containing naturally-occurring asbestos. Therefore, the proposed project would not exposure of site workers or the surrounding community to naturally-occurring.. As such, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

References Used:

California Air Resources Board Website:www.arb.ca.gov/toxics/asbestos/geninfo.htm

Soil Conservation Service. 1980. Soil Survey of Los Angeles County California

7. Greenhouse Gas Emissions

Project Activities Likely to Create an Impact:

- On-site equipment emissions from removal of existing concrete, excavation, backfilling, and grading
- Off-site disposal of soil and demolition debris
- Transport of on-site and/or off-site soil for backfilling of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

Various gases in the earth’s atmosphere play an important role in moderating the earth’s surface temperature. Solar radiation enters earth’s atmosphere from space and a portion of the radiation is absorbed by the earth’s surface. The
earth emits this radiation back toward space, but the properties of the radiation change from high-frequency solar radiation to lower-frequency infrared radiation. Greenhouse gases (GHGs) are transparent to solar radiation, but are effective in absorbing infrared radiation. Consequently, radiation that would otherwise escape back into space is retained, resulting in a warming of the earth’s atmosphere. This phenomenon is known as the greenhouse effect.

Scientific research to date indicates that some of the observed climate change is a result of increased GHG emissions associated with human activity. Among the GHGs contributing to the greenhouse effect are water vapor, carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and chlorofluorocarbons. Human-caused emissions of these GHGs in excess of natural ambient concentrations are considered responsible for enhancing the greenhouse effect. GHG emissions contributing to global climate change are attributable, in large part, to human activities associated with the industrial/manufacturing, utility, transportation, residential, and agricultural sectors.

In 2009, California statewide GHG emissions were 487 million MTCO₂e per year; net emissions were 453 million MTCO₂e per year, reflecting the influence of sinks (i.e., net CO₂ flux from forestry). Transportation contributes the most to the GHG emissions, followed the electricity generation sector, which includes both in-state generation and imported electricity.

Analysis as to whether or not project activities would:

a. Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment.

Impact Analysis:

The proposed project could generate GHG emissions from vehicle exhaust associated with construction-related activities including off-road construction equipment, construction worker commuting, and haul/vendor truck trips. GHG emissions for the proposed project were estimated using CalEEMod, Version 2013.2, as described in the Air Quality Section (Section 3, above). Rail emissions from offsite hauling of soil were estimated based on information provided by Union Pacific Railroad Company and the Climate Registry default emission factors for locomotives diesel.

Operational emissions from electricity usage by the estimated 40 horsepower blower for the VES and for the sub-slab venting system (if it is active) were calculated. It was assumed that this blower would operate 24 hours per day, 365 days per year. Emission factors for Los Angeles Department of Water and Power from CalEEMod Version 2013.2 were used. Vehicle emissions from anticipated site visits are also included in the operational emissions. As described in the Air Quality section, emission factors from EMFAC2011 were used to calculate vehicle emissions.

On December 5, 2008 the SCAQMD Governing Board adopted an interim quantitative GHG Significance Threshold for industrial projects where the SCAQMD is the lead agency (e.g., stationary source permit projects, rules, plans, etc.) of 10,000 metric tons CO₂ equivalent per year. GHG emissions are often expressed in terms of carbon dioxide equivalent (CO₂e) emissions, which allow comparison of the emissions from various GHGs based upon their global warming potentials. Carbon dioxide equivalents are commonly expressed as “metric tons of carbon dioxide equivalents (MTCO₂e).” The CO₂e for a non-CO₂ gas is derived by multiplying the tons of the gas by the associated GWP (i.e. 21 for CH₄ and 310 for N₂O [IPCC 1996]). The SCAQMD recommends that construction emissions be amortized over the project lifetime and then be added to operational emissions so that GHG emission reduction measures also capture construction. Table 6 summarizes emissions from the proposed project.

<table>
<thead>
<tr>
<th>Source</th>
<th>CO₂e</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction</td>
<td>1,160</td>
<td><1</td>
<td><1</td>
<td>1,169</td>
</tr>
<tr>
<td>Amortized Construction</td>
<td>39</td>
<td><1</td>
<td><1</td>
<td>39</td>
</tr>
<tr>
<td>Operation</td>
<td>150</td>
<td><1</td>
<td><1</td>
<td>151</td>
</tr>
<tr>
<td>Total</td>
<td>189</td>
<td><1</td>
<td><1</td>
<td>190</td>
</tr>
</tbody>
</table>

Notes:
1. Amortized construction emissions are defined as total construction emissions divided by the project lifetime. The project lifetime is assumed to be 30 years unless project-specific data is known.
2. Total emissions are defined as annual operational emissions plus amortized construction emissions.

Key: CH₄ = methane; CO₂e = carbon dioxide equivalent; CO₂ = carbon dioxide; N₂O = nitrous oxide

The annual GHG emissions, or the amortized construction emissions plus operational emissions (190 MTCO₂e per year), are substantially less than the SCAQMD GHG significance threshold of 10,000 MTCO₂e per year. Therefore, the proposed project would result in a less than significant impact from GHG emissions.
b. Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

Impact Analysis:

Assembly Bill (AB) 32, the California Global Warming Solutions Act, established a state goal of reducing GHG emissions to 1990 levels by the year 2020, which would require a reduction of approximately 30 percent from "business as usual" or forecasted emission levels. Senate Bill (SB) 97, a companion Bill, directed the California Natural Resources Agency to certify and adopt guidelines for the mitigation of GHG or the effects of GHG emissions. SB 97 was the State Legislature's directive to the California Natural Resources Agency to specifically establish that GHG emissions and their impacts are appropriate subjects for CEQA analysis. SB 97 also required the California Governor's Office of Planning and Research to develop revisions to CEQA implementation guidelines to incorporate GHG. These were adopted by the California National Resources Agency in December 2009, and went into effect in March 2010. They contain requirements to characterize the GHG setting, quantify the impacts resulting from the proposed project, determine impact significance, and mitigate as appropriate. They leave the determination of significance to the Lead Agency.

In addition to state regulations, on January 16, 2007, the County of Los Angeles adopted the Energy and Environmental Policy as part of the County's effort to help conserve natural resources and protect the environment. The goal of the policy is to provide guidelines for the development, implementation, and enhancement of energy conservation and environmental programs. In order to meet the goals of the policy and ultimately AB 32, the County has implemented energy efficient projects in County facilities, specifically retrofitting or replacing building lighting systems and air conditioning equipment. The County has also developed/adopted tools and policies to support the reduction of GHG emissions that include but are not limited to: the "green building" ordinance, which would lead to all new private development within the unincorporated areas of the County being certified under the Leadership in Energy and Environmental Design (LEED) or equivalent standards; County sponsored recycling programs; and the incorporation of Low Impact Design Standards and drought tolerant landscaping. The proposed project would not involve development of the project site, and therefore, would not be subject to this policy.

Consistency with applicable GHG plans or policies is measured in terms of participating positively in the GHG reduction goals of AB 32. By 2020, state and national GHG reduction programs are anticipated to achieve approximately a 24 percent in emissions compared to the business as usual alternative. CARB has implemented programs and regulatory actions such as the low-carbon fuel standard as well as passenger vehicle efficiency measures for on-road passenger/light truck transportation.

The proposed project would not conflict with an applicable plan, policy, or regulation adopted to reduce GHG emissions. The short-term construction GHG emissions would not interfere with the AB 32 Scoping Plan and the long-term goal of AB 32 to reduce GHG emissions to 1990 levels by 2020. Operation of the proposed project would result in minor GHG emissions from vehicle travel and electricity use. However GHG emissions are negligible compared to the statewide GHG inventory. Therefore, the proposed project would not conflict with plans, policies, or regulations intended to reduce GHGs and impacts would be less than significant.

References Used:

8. Hazards and Hazardous Materials

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil; loading excavated soils onto dump trucks for on-site management and onto gondola cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

Past industrial activities at the Taylor Yard complex, in conjunction with groundwater contamination in the San Fernando Valley Groundwater Basin, have contaminated groundwater and soil under much of the project site. The Taylor Yard complex (which includes the project site) is designated as a "brownfields site". In addition, four National Priority List (NPL) sites are located within the San Fernando Valley: Area 1 North Hollywood, Area 2 Crystal Springs, Area 3 Verdugo, and Area 4 Pollock. The project site is within Area 4, which covers areas in and adjacent to the cities of Los Angeles and Glendale. The contaminants of concern are VOCs, predominantly trichloroethene (TCE), and tetrachloroethene (PCE). These solvents are used by many industries in the San Fernando Valley and have found their way into the groundwater through improper use, storage, and disposal practices. The concentrations of the VOCs in groundwater are above the federal drinking water standards.

Analysis as to whether or not project activities would:

a. Create a significant hazard to the public or the environment throughout the routine transport, use or disposal of hazardous materials.

Impact Analysis:

The proposed project is a remediation project that would be conducted in accordance with local, state, and federal regulations including the State of California Hazardous Waste Requirements and the State of California Solid (Non-Hazardous) Waste Requirements. The contaminated material would be handled by environmental contractors and their personnel trained in 40-hour training in compliance with Title 29 CFR 1910.120 and Title 8 CCR Section 5192 in handling hazardous materials. Contaminated material would be segregated from waste soil, and the soil would be stockpiled and chemically analyzed to determine if the soil could be disposed at a facility without additional treatment. Stockpiled soil would also be covered, and air monitoring would be performed during excavation to detect possible off-site impacts.

As detailed in Section 16, Transportation and Traffic, below, as part of the proposed project a transportation plan would be developed to establish traffic-related procedures which shall be implemented by the remediation action contractor during excavation, loading, and off-site transportation of excavated soil and debris. This detailed transportation plan would be developed once the remedial design is finalized. As part of the detailed transportation plan, all trucks transporting contaminated soil would follow a specific route delineated to limit impacts to residents and businesses. The contaminated soil would be hauled off-site to a permitted landfill facility for disposal as appropriate based on the type of contaminant present and chemical composition. It is anticipated that all hazardous soil generated during the proposed project would be disposed at ECDC disposal facility in East Carbon, Utah while all solid waste generated by the proposed project would be taken to the Sunshine Canyon Landfill in Sylmar, California. Transportation of fuel and lubricants associated with vehicles used on-site during implementation of the proposed
project would conform to state and federal requirements for hazardous materials transportation. In addition, implementation of applicable site controls, such as proper cleanup/decontamination procedures, would limit exposure to contaminated soils. The contractors would be responsible for conducting a daily safety meeting and training staff in the proper handling of contaminated materials, use of personnel protective equipment, and emergency procedures in accordance with a Health and Safety Plan (HSP). The remedial activities would be temporary (approximately 10 months). The proposed project would involve excavation of on-site contaminated soil, which would be managed as potentially hazardous waste. Site restoration would consist of backfilling the excavated areas with clean imported soils. Operation consists of ongoing operation and maintenance of the remediation systems and groundwater monitoring activities, which would involve limited amounts of activity and maintenance. Spent carbon from the VES off-gas treatment system would be properly removed (anticipated to be two to four times a year) by the carbon vendor and transported by registered hazardous waste hauler licensed by the State of California for disposal or regeneration at a licensed and permitted off-site facility. Therefore, the proposed project would not create a significant hazard to the public or the environment through the routine transort, use, or disposal of hazardous materials and a less than significant impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

b. Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.

Impact Analysis:

The purpose of the proposed project is to achieve all of the RAOs while resulting in maximum reductions in risk and site-wide EPCs with minimal localized excavation. However, potential upset conditions could occur during remedial action activities such as fire, fuel spills, and hydraulic fluid leaks. Access to the project site would be restricted to prevent public exposure during excavation of contaminated soils. As detailed in the RAP for the proposed project, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) requires that the selected remedy for all remedial actions must attain or exceed the Applicable or Relevant and Appropriate Requirements (ARARs) in environmental and public health laws. The NCP also requires removal actions to attain ARARs to the greatest extent practicable. The distinction between “applicable” and “relevant and appropriate” is important to understanding the constraints imposed on remedial alternatives by environmental regulations in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and according to EPA guidance. Therefore, the proposed project, as required by DTSC, would attain or exceed the applicable or relevant and appropriate requirements (ARARs) in environmental and public health laws for all remedial actions, as described further in detail in the RAP. All remedial actions would also be conducted in accordance with a HSP, which outlines enforcement of safe work practices and other safety provisions. Transportation of excavated soil would be performed in covered trucks, which would be operated by registered hazardous waste hauler licensed by the State of California and would be trained to deal with emergencies. Truck drivers would be required to be familiar with and follow designated haul routes and traffic controls that have been established. Other appropriate maintenance practices that would minimize hazardous releases include, but not limited to: proper storage of fuels; installing wheel washers for all exiting trucks, or wash off the tires or tracks of all trucks and equipment leaving the project site; marking of underground utilities; applying sandbags or other erosion control measures to prevent silt runoff to public roadways; and, enclosing, covering, and watering twice daily or applying (non-toxic) soil binders to exposed stockpiles. A permit to construct and a permit to operate will be obtained from SCAQMD prior to installation and operation of the VES. The carbon vessels would meet the Best Available Control Technology requirement for air pollution control and preventing release of hazardous materials to the atmosphere. Compliance with the permit limit would ensure that the operational emissions do not violate any rules or plans. Operation and maintenance activities associated with VES and sub-slub venting system will require weekly routine visits and occasional non-routine maintenance (two to four times year for carbon changeout). In addition, ongoing groundwater monitoring would be limited to quarterly sampling initially and reduce to annually as approved by DTSC. Therefore, the proposed project would not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment; as such, a less than significant impact is anticipated to occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact
c. Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances or waste within one-quarter mile of an existing or proposed school.

Impact Analysis:

The Central Los Angeles High School No. 13 is located on Parcel F, immediately east of the project site, and the Glassell Elementary School is located further east across San Fernando Road. The proposed project involves the removal of contaminated soils and remedial activities. The proposed project would entail excavation and transportation of hazardous materials. However, fugitive dust would be the only possible source of emissions that could occur within the vicinity of these schools. Emissions would be controlled by applying dust covers or drums when transporting any debris or impacted soils. The debris, soil and potential contaminants on the debris or soils are all solid and non-reactive. As discussed previously, all work would be conducted in accordance with a HSP, which provides an emergency contingency plan. Ongoing activities associated with operation and maintenance of the remediation systems and groundwater monitoring would be limited to minor amounts of maintenance, weekly routine visits and quarterly groundwater sampling initially to be reduced to annually as approved by DTSC. Additionally, the VES (and sub-slab venting system, if active) would be operated in compliance with a permit to construct and permit to operate and equipped with carbon vessels that would meet the Best Available Control Technology requirement for air pollution control and prevent release of hazardous materials to the atmosphere. As result none of the ongoing operational activities are anticipated to emit hazardous emissions or handle hazardous materials, substances or waste. Therefore, the proposed project would have a less than significant impact relative to hazardous emissions or the handling of hazardous materials near an existing or proposed school site.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

d. Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to public or the environment.

Impact Analysis:

The project site is identified as an active site on DTSC’s Cortese list, which is compiled pursuant to Government Code Section 65962.5. However, the proposed removal activities are not expected to create a significant hazard to the public or the environment. The proposed activities are intended to reduce hazards by excavation and disposal of contaminated material at a permitted off-site location. In addition, ongoing operation and maintenance of the remediation systems and groundwater monitoring would occur to determine if confirm the effectiveness of the remedial activities. As such, the proposed project would have a less than significant impact relative to the creation of a significant hazard to the public or the environment.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

e. Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan.

Impact Analysis:

All work associated with the proposed project would be conducted in accordance with a HSP, which would include an emergency response plan to coordinate remedial activities with local emergency response agencies. Two-way traffic would be maintained on all surrounding streets. Proposed project activities, including operation and maintenance of the remediation systems and groundwater monitoring during operation, would not obstruct access to surrounding areas. Therefore, implementation of the proposed project would not impair implementation of an adopted emergency response plan or emergency evacuation plan and a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
References Used:

9. Hydrology and Water Quality

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil; loading excavated soils onto dump trucks for on-site management and onto gondola cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The project site is within the San Fernando Groundwater Basin in the Upper Los Angeles River area. The general groundwater flows in a south-southeast direction and ranges from 30 to 40 feet below ground surface. The depth to groundwater at the project site is seasonally influenced, in which groundwater levels are relatively high during the wet season and low during the dry season.

Groundwater has been regionally impacted from historical industrial activities dating back to the 1940s. Various chlorinated VOCs (i.e., TCE and PCE) and metals are present in the groundwater beneath the project site, which currently exceeds state drinking water standards; however, groundwater impacts are generally attributed to the regional VOC groundwater plume and VOC sources located upgradient of the project site.

The Pollock Well Field, within which the project site is located, is a drinking water resource for the Los Angeles area. The Los Angeles Department of Water and Power's (LADWP's) Pollock Wells Treatment Plant restores the use of two existing production wells by treating extracted groundwater with activated carbon, then chlorinates and blends it with imported water to reduce nitrate concentrations. Since the Pollock groundwater extraction and treatment system was reactivated in 1999, VOC concentrations in groundwater under the project site have significantly decreased to below or near the maximum contaminant levels. Therefore, continued operation of the Pollock system would prevent upgradient contaminants from degrading groundwater quality at the project site and the residual VOCs in groundwater at the project site should continue to attenuate. The facility is located at the northern end of the Taylor Yard complex (within the Glendale Narrows area of the City of Los Angeles).

Runoff from adjacent areas is directed into storm drains running under the project site. These storm drains empty into the Los Angeles River through culverts along the northeastern flood control levee. The railroad embankment isolates the project site from runoff generated by adjacent parcels within the Taylor Yard complex. The adjacent section of the Los Angeles River mostly conveys flood flows, urban runoff, and treated wastewater effluent from the northern reaches of Los Angeles to the Pacific Ocean at Long Beach. The Los Angeles River has not exceeded its channel capacity. However, areas immediately adjacent to the River are within the 100-year floodplain.

Analysis as to whether or not project activities would:

a. Violate any water quality standards or waste discharge requirements.

Impact Analysis:

The remedial activities associated with the proposed project would generate wastewater, demolition debris and soils that would be collected, analyzed, and disposed of generally off-site. If uncontrolled, disturbed sediment and soils could be discharged into the River and/or release petrochemicals from construction equipment. The County of Los Angeles...
Angeles and the City were co-permittees under the municipal stormwater National Pollutant Discharge Elimination System (NPDES) Permit for Los Angeles County. Construction activities are covered under the General Construction and General Industrial Stormwater Permits implemented through the NPDES General Permits. Stormwater discharges to the municipal separate storm sewer system (MS4) of the City of Los Angeles are regulated under Order Number 01-182, NPDES Permit No. CAS004001 Waste Discharge Requirements for Municipal Stormwater and Urban Runoff Discharges within the County of Los Angeles, and the Incorporated Cities. The previous MS4 Permit (NPDES Permit No. CAS004001) was issued by the Los Angeles Regional Water Quality Control Board (LARWQCB) on December 13, 2001, amended on April 14, 2011 pursuant to the peremptory writ of mandate in Los Angeles Superior Court Case No. BS122724. A major update of the MS4 Permit was finally adopted on November 8, 2012 by the LARWQCB (Order Number R4-2012-0175), with an effective date of December 28, 2012. Therefore, coverage of the NPDES under the LARWQCB’s MS4 Permit would need to be obtained prior to beginning the proposed project. Additionally, as mentioned previously, a construction SWPPP would be developed that includes BMPs to help control erosion and loss of soil during excavation and site restoration and convey storm water run on away from the project site. The SWPPP would be developed by a QSD in accordance with the General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (General Permit), Water Quality Order No. 2012-006-DWQ (NPDES NO. CAS000002) adopted by the SWRCB. A Notice of Intent (NOI) would be filed with the LARWQCB to obtain a WDID number for the project. A copy of the SWPPP, all other appropriate Permit Registration Documents (PRDs), and fees would be submitted to the LARWQCB and the local agency (City of Los Angeles) in advance of beginning the work. All measures outlined in the SWPPP would be implemented by a Qualified SWPPP Practitioner (QSP) or persons trained under the QSP throughout the duration of the project. All activities under the proposed project would therefore be in full compliance with all permits and requirements of the LARWQCB (such as the General Construction and General Industrial Stormwater Permits implemented through the NPDES General Permits for construction and the MS4 Permit requirements for operation) and, therefore, a violation of a water quality standard or a waste discharge requirement is not anticipated. Overall, the proposed project would improve water quality at the project site, especially with free product removal. In addition, ongoing operation and maintenance of the remediation systems and groundwater monitoring would have a minimal effect on the project site. As such, as a result of the proposed project, a less than significant impact would occur relative to compliance with water quality standards and requirements.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

b. Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted).

Impact Analysis:

As previously mentioned, the Pollock Well Field is a drinking water resource, where groundwater is extracted upgradient of the project site. Because of the shallow depth of excavation associated with the proposed project, groundwater is not expected to be encountered and therefore, infiltration from the project site would not affect any drinking water aquifers. Also, the excavation footprint should only be open for a short duration prior to backfill to minimize the volume of water that collects in the excavation area. The purpose of the proposed project is to clean up and completely remove the contaminated soils at the subsurface of the project site. As a result, it would improve the water table and groundwater quality, and reduce potential migration of contaminants to groundwater. In addition, the future building development and asphalt pavement with sub-slab venting with vapor barriers (as part of the construction and operation of the remediation systems) would prevent direct contact, vapor intrusion and leaching to groundwater. Ongoing groundwater monitoring would have no effect on groundwater supplies and would not deplete or interfere with the local groundwater table level. Therefore, the proposed project is not expected to substantially deplete groundwater resources or interfere with groundwater recharge for the area, as such, a less than significant impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact
c. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on or off-site.

Impact Analysis:

The topography of the project site is relatively flat. There is several stormwater drains that cross under the project site at various depths below ground surface and drainage inlets located on San Fernando Road east of the project site. There is no stream of river on the project site and the proposed project would not alter the course of the adjacent Los Angeles River. The excavated areas would be graded, backfilled, and restored such that substantial erosion or siltation would not occur on- or off-site and existing drainage would not be altered. In addition, the ongoing remediation systems operation and maintenance and groundwater monitoring associated with operation would not have any impacts to drainage. Therefore, the proposed project would not result in substantial alteration of existing drainage patterns or result in substantial erosion or siltation on- or off-site, as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☑ Potential Significant Unless Mitigated
☐ Less Than Significant Impact
☐ No Impact

d. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off-site.

Impact Analysis:

As noted in the response under (c), the excavated areas would be backfilled, graded, and restored to the original grade/condition. No changes are anticipated to on-site drainage and there would be no changes to the course of the Los Angeles River. In addition, construction BMPs and post-construction measures would limit the amount of surface runoff; therefore, no substantial increase in the rate or amount of surface runoff would occur. The proposed project would not alter drainage patterns or surface runoff in a manner that would result in flooding on- or off-site; as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☑ Less Than Significant Impact
☐ No Impact

e. Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff.

Impact Analysis:

As noted above in (c) and (d), the proposed project would not substantially alter existing drainage patterns and no new drainage is proposed as part of project implementation. Runoff, which is adequately conveyed from the project site via the existing municipal stormwater system, would not increase substantially. In addition, implementation of BMPs would reduce the movement of soil and/or water from the excavation area into stormwater runoff. Such BMPs include the use of silt fences, sandbag berms, and hay bales; and, the management of soil stockpiles through diversion of drainage, placement of sandbags and silt fencing, and slopping of stockpiles to encourage sheet flow. Ongoing remediation system operations and maintenance and groundwater monitoring associated with operation activities would not create or contribute runoff water. Consequently, the proposed project would not exceed the capacity of the existing stormwater system, nor would it introduce substantial sources of polluted runoff; as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☑ Less Than Significant Impact
☐ No Impact
f. Otherwise substantially degrade water quality.

Impact Analysis:

As discussed in (a), the proposed project would not violate any water quality standards or discharge requirements. Implementation of the updated NPDES and Los Angeles County MS4 Permit requirements would ensure that potential stormwater runoff quality and quantity impacts would be addressed through proper design, BMPs, and other municipal source detection and elimination programs. The BMPs would prevent contamination of stormwater runoff and prevent spills and decrease the potential for off-site discharge through stormwater. The proposed project is intended to improve water quality by reducing groundwater contact with contaminants and by mitigating subsurface pollutant migration; therefore, a less than significant impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

g. Place within a 100-year flood hazard area structures which would impede or redirect flood flows.

Impact Analysis:

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (Map No. 06037C1626F), the project site is located in an area designated as Zone X, which is an area determined to be outside the 0.2 percent annual chance floodplain (or an area that is outside of a 500-year flood zone). Although the VES blower and associated off-gas treatment system (carbon vessels), if needed, would be housed within a small enclosure, implementation of the proposed project would not place structures within a 100-year flood hazard area which would impede or redirect flood flows, as such, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

h. Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam.

Impact Analysis:

According to the City of Los Angeles General Plan Safety Elements, the project site is located within the Hansen Dam and Eagle Rock Reservoir flood boundaries. However, the project site is located in a heavily developed urban area, more than 18 miles from the Hansen Dam and 4.5 miles from Eagle Rock Reservoir. Also, because Hansen Dam is used primarily for flood control, the dam is not typically filled to capacity. Construction of the proposed project would involve a maximum of approximately 6 workers and equipment on-site for a short duration (approximately 10 months). Although the VES blower and associated off-gas treatment system (carbon vessels), if needed, would be housed within a small enclosure, implementation of the proposed project would not involve placement of structures at the project site that would result in exposure to a significant risk. Therefore, the potential for the project site to be inundated as a result of the failure of a levee or dam, and potentially expose people and structures to flooding due to levee or dam failure, are low; as such, a less than significant impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

i. Inundation by sieche, tsunami or mudflow.

Impact Analysis:
Because there are no lakes or other large inland bodies of water in the vicinity of the project site, there is no risk of inundation by seiche. The project site is located approximately 16 miles inland from the Pacific Ocean. At this distance and elevation, the project site would not be at risk of inundation by tsunami. In addition, the 1999 Seismic Hazard Zones Map for the Los Angeles USGS 7½-minute quadrangle indicates that the project site is not located in an area of potential earthquake-induced landslides. Given these conditions, there is no anticipated risk related to inundation by seiche, tsunami, or mudflow; as such, no impact would occur.

Conclusion:

- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- ✗ No Impact

References Used:

City of Los Angeles. 2001 Conservation Element of the City of Los Angeles General Plan. Adopted by the City Council September 26.

Los Angeles County Department of Regional Planning. 1990 Flood and Inundation Hazards Map. January.

10. Land Use and Planning

Project Activities Likely to Create an Impact:

- Remedial activities and site restoration
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring
- Land use covenant (LUC) and groundwater use restriction

Description of Baseline Environmental Conditions:

Land use in the vicinity of the project site is highly urbanized. The current uses immediately surrounding Taylor Yard are industrial with a transition to non-industrial uses such as retail, office, and residential. The existing land uses do not have any kind of physical or functional connection with Taylor Yard, except for the proximity of two major thoroughfares, San Fernando Road and the UPRR rail line that runs through the center of the Taylor Yard.

Immediately abutting the industrial area of Taylor Yard are the long-established neighborhoods of Cypress Park, Glassell Park, Elysian Valley, and Atwater Village. Approximately 730 acres of park lands and open spaces exist within a two mile radius of the project site, including the Rio de Los Angeles State Park, which abuts the project site. The 600-acre Elysian Park, the second largest park in Los Angeles County, is located across the Los Angeles River southwest of the project site. Also, Central Los Angeles High School No/13 is located on Parcel F (a parcel northeast of the project site).

The land use of the project site is zoned as heavy industrial. Currently, the only structures and features left on the project site are the building foundations, asphalt pavement, and a portion of one of the service tracks. The project site is secured by a perimeter fence, and a main gate that is locked at all times.

Analysis as to whether or not project activities would:

a. Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.
Impact Analysis:

The project site has been used as a rail operations and maintenance facility, and is in compliance with applicable land use plans, policies, and regulations, such as the General Plan and Northeast Los Angeles Community Plan. The remedial activities would not impact land use because no zoning or land use changes are being proposed. Operation and maintenance of the remediation systems and ongoing groundwater monitoring associated with operation activities would not change or conflict with existing land uses. However, as part of future development of the project site, a LUC is anticipated to be implemented to protect sensitive land uses from unsafe exposures to hazardous substance remaining in place on the project site. A LUC and groundwater use restriction would be prepared to minimize the potential for human exposure to the impact soil and/or groundwater at the project site and to protect the integrity of the implemented remedy. These LUC requirements would not be compromised by implementation of the proposed project and does not conflict with current zoning designations. Therefore, a less than significant impact would occur relative to applicable land use plans, policies, or regulations.

Conclusion:

- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

b. Conflict with any applicable habitat conservation plan or natural community conservation plan.

Impact Analysis:

The project site is not located within a habitat conservation plan or a natural community conservation plan. Therefore, no impact would occur relative to any applicable habitat conservation plans.

Conclusion:

- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

References Used:

11. Mineral Resources

Project Activities Likely to Create an Impact:

- Excavation and import of soil

Description of Baseline Environmental Conditions:

The project site is not located within an area with existing mineral extraction land uses, and it is not designated as an important mineral resource by the California Department of Conservation or the City of Los Angeles.

Analysis as to whether or not project activities would:
a. Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state.

Impact Analysis:

There are no known mineral resources at the project site. Although the primary mineral resources along the adjacent stretch of the Los Angeles River are gravel and sand deposits, the project site and surrounding area is considered inaccessible for mining extraction due to its urbanized character. Therefore, the project activities, including operation and maintenance of the remediation systems and groundwater monitoring during operation, would not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state. As such, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

b. Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan.

Impact Analysis:

There are no locally-important mineral resource recovery sites at the project site. Therefore, no loss of availability of a locally important mineral resource recovery site would result from project implementation. As such, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

References Used:

City of Los Angeles, 2001 Conservation Element of the City of Los Angeles General Plan. Adopted by the City Council September 26, 2001.

12. Noise

Project Activities Likely to Create an Impact:

- Equipment associated with data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil, loading excavated soils onto dump trucks for on-site management and onto gondola/rail cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The proposed project is located in an industrial area near the Golden State Freeway (I-5) between the State Route 110 (SR-110) and State Route 2 (SR-2) interchanges. Metrolink, Amtrak, and UPRR rail lines run adjacent to the project site. Rio de Los Angeles State Park is located east of the rail tracks. Central Los Angeles High School No. 13 is located on Parcel F (a parcel northeast of the project site).

The nearest residences are located 825 feet southwest of the center of the project site where the majority of the construction activity would occur. The Central Los Angeles High School No. 13 is located approximately 300 feet and 400
feet north of the project site boundary and the nearest excavation area, respectively. The land use in the vicinity of the project site is highly urbanized. All nearby airports are located over 10 miles from the project site.

Analysis as to whether or not project activities would result in:

a. Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

Impact Analysis:

The City regulates construction noise via the Los Angeles Municipal Code (LAMC) (Chapter IV, Article 1, Section 41.40; Chapter XI, Article 2, Section 112.05). The City allows construction during the week between the hours of 7:00 a.m. and 9:00 p.m., and specifically prohibits night construction if related noise can disturb persons occupying sleeping quarters in any dwelling, hotel, or residence. In addition, construction within 500 feet of a residence is restricted to the hours of 8:00 a.m. to 6:00 p.m. on Saturdays and National Holidays, and prohibited on Sundays. The City's standard construction specifications require construction equipment to have noise suppressing devices, and requires noise controls such as placement of noise barriers, use of low-noise generating equipment, maintenance of mufflers and ancillary noise abatement equipment, scheduling high noise producing activities during periods that are least sensitive, routing construction-related truck traffic away from noise-sensitive areas, and reducing construction vehicle speeds. A common measurement of sound and environmental noise is the A-weighted decibel scale (dBA). Construction equipment noise levels within 500 feet of residential areas are limited to 75 dBA at 50 feet, if technically feasible.

In general, the use of haul trucks and heavy equipment (e.g., excavators, loaders, and dozers) associated with the excavation of contaminated soils and restoration activities would result in increases in ambient noise levels in the vicinity of the project site. Each anticipated construction equipment at 50 feet is estimated to produce 73 to 81 dBA on average. Noise calculations are presented in Appendix C.

The site is a vacant industrial area and fenced with no public access. There are no residences immediately adjacent to the project site. The nearest residences are located across the Los Angeles River, behind commercial development, approximately 825 feet southwest of the project site. Noise levels would decrease from increasing distance from the project site. Therefore, noise generation from the project site would not reach health or safety concern for these residents. The Central Los Angeles High School No. 13 is located adjacent to the project site (along the northeastern boundary) and less than 500 feet away from the nearest excavation area. The construction noise level at Central Los Angeles High School No. 13 would be 70 dBA and 67 dBA at 300 feet (from the project site boundary) and 400 feet (from the nearest excavation area), respectively. While the majority of construction activities would occur in the middle of the project site, noise associated with the excavation area nearest to the high school would be intermittent and temporary. In addition, according to the Noise Element of the City of Los Angeles, exposures of up to 70 dBA for noise-sensitive uses are considered conditionally acceptable. Noise level increases associated with the excavation and other construction activities would be limited to daytime hours and would be irregular and of short-term duration.

Operation of the proposed project would consist of ongoing operation and maintenance of the remediation systems and groundwater monitoring. Although the operation of the remediation system could include a VES blower (if VES is needed and/or if the passive sub-slab venting system needs or is desired to be active based on monitoring results), a VES blower and associated off-gas treatment system (carbon vessels) would be connected to VES wells and/or the exhaust pipe(s) of the sub-slab venting system to provide continuous evacuation of the subsurface and/or sub-slab vapors. The blower and the carbon vessels would be housed within a small suitable enclosure to reduce noise. Therefore, operation of the proposed project would not result in generation of excessive noise levels. Therefore, a less than significant noise impact is anticipated during project operation. The project site would fall within the acceptable noise levels of 50-75 dBA for office buildings, commercial, and industrial land use. The proposed project would not result in a noise increase of 5 dBA or greater.

In conclusion, construction of the proposed project would be intermittent and temporary and within acceptable levels and operation of the proposed project would be minimal and not result in a perceivable noise increase; therefore, the proposed project would be in compliance with the City of Los Angeles Noise Ordinance and General Plan's Noise Element and a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
b. Exposure of persons to or generation of excessive groundbourne vibration or groundbourne noise levels.

Impact Analysis:

Construction activities associated with the proposed project could generate minor groundbourne vibration from use of heavy equipment and haul trucks. Construction equipment such as drill rigs, compaction equipment, and haul trucks would generate vibrations that could result in groundbourne noise or vibration that may affect nearby structures or residents. Vibration levels greater than 0.3 inches per second (in/sec) have potential to damage older residential structures and levels greater than 0.1 in/sec would be strongly perceptible and possibly annoying to a human. Operation of drills, large bulldozers, loaded trucks, and rollers could result in vibration levels approximately up to 0.001 in/sec at the residences closest to the construction area. Vibration calculations are presented in Appendix C. Excessive groundbourne vibration and/or groundbourne noise (in other words, groundbourne vibration or noise greater than 0.3 in/sec) are not anticipated during remedial or operation activities. Therefore, the proposed project would not expose persons to or generation of excessive groundbourne vibration or groundbourne noise levels, as such a less than significant impact is anticipated.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

c. A substantial permanent increase in ambient noise levels in the vicinity above levels existing without the project.

Impact Analysis:

The duration of the remedial activities at the project site would be limited to approximately 10 months. As noted previously, an increase in ambient noise levels would result during demolition of existing foundation concrete, excavation of contaminated soils, and site restoration. However, the increase in noise would be temporary, and would not have a long-term or permanent impact on adjacent areas. Although the operation of the remediation system could include a VES blower (if VES is needed and/or if the passive sub-slab venting system needs or is desired to be active based on monitoring results), a VES blower and associated off-gas treatment system (carbon vessels) would be connected to VES wells and/or the exhaust pipe(s) of the sub-slab venting system to provide continuous evacuation of the subsurface and/or sub-slab vapors. The blower and the carbon vessels would be housed within a small suitable enclosure to reduce noise. Therefore, operation of the proposed project would not result in a substantial permanent increase in ambient noise levels in the vicinity above existing levels. As such, a less than significant impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

d. A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project.

Impact Analysis:

For construction projects that last more than 10 days within a three month period, the City recommends using the threshold of significance of 5 dBA or more increase in noise levels over existing ambient community noise equivalent level (CNEL), which is a type of a 24-hour average noise level. Also, the City also recommends using the threshold of significance of 5 dBA or more increase in noise levels over ambient levels at receptors between 9:00 p.m. and 7:00 a.m. on weekdays, before 8:00 a.m. or after 6:00 p.m. on Saturdays, or any time on Sundays.

Based on the anticipated construction equipment by construction phase and default equipment data in the FHWA Roadway Construction Noise Model, construction noise levels at 50 feet are estimated to range from 77 to 86 dBA. Haul trucks and construction employee commute are not expected to substantially increase the traffic levels and therefore the traffic noise level increase would not be perceptible. At residential areas 825 feet away, the daily average noise levels with construction would be approximately 61 dBA or less. It was estimated that existing ambient
noise levels of the residential area is approximately 60 dBA based on average ambient noise levels for urban residential land uses published by EPA. The increase in ambient noise levels during construction would be less than 5 dBA. Construction activities are not anticipated to result in substantial increase in average daily ambient noise levels. Noise levels outside the project site are expected to be within the range of ambient noise levels. The noise levels would be temporary, intermittent, and limited to daytime hours, which is in compliance with the LAMC. Therefore; the potential for an impact on temporary or periodic increase in ambient noise levels in the project vicinity would be less than significant.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

References Used:

13. Population and Housing

Project Activities Likely to Create an Impact: None.

Description of Baseline Environmental Conditions:

The immediate vicinity of the project site is predominantly open space and contains no housing. Residential uses are located across the Los Angeles River and on the opposite side of San Fernando Ave. Activities associated with the proposed project would not induce growth in the site area, nor would the proposed project necessitate any construction of replacement housing.

Analysis as to whether or not project activities would:

a. Induce substantial population growth in area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure).

Impact Analysis:

The remedial activities of the project would not involve the construction of new housing, businesses, or infrastructure that could result in the direct or indirect inducement of population growth. The proposed project would also not directly induce substantial population growth because it does not include a residential or commercial element. Existing land use would not be changed. Therefore, no impact would occur.

Conclusion:
☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

b. Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere.
Impact Analysis:

No homes currently exist within the project site. The proposed project activities would not displace housing or necessitate the construction of replacing housing elsewhere. Therefore, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☒ No Impact

c. Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere.

Impact Analysis:

No persons would be displaced by the proposed project, and therefore, would not displace substantial numbers of people, necessitating the construction of replacement housing elsewhere. Therefore, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☒ No Impact

References Used:

14. Public Services

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil; loading excavated soils onto dump trucks for on-site management and onto gondola cars for off-site disposal
- Transport of soil to the project site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The City of Los Angeles Fire Department provides fire protection services. The project site is served by Fire Station No. 44, located at 1410 Cypress Avenue. The station is equipped with an Engine Company with a paramedic, a basic life service ambulance, a brush patrol, and swift water rescue. There are a total of 6 firefighters on duty at the station. Major incidents at Taylor Yard would also be responded to by Task Force 50 (which includes 10 firefighters, 1 ladder truck, and 2 engines) from Fire Station Number 50, which is located at 3036 Fletcher Drive. Fire Station 44 and 50 are located approximately 0.2 and 1 mile from the project site, respectively.

The Northeast Community Police Station of Los Angeles Police Department's Central Bureau provides law enforcement services to the project site. The Northeast Station is located at 3353 San Fernando Road, approximately 1.5 miles north of the project site.

The project site is within Local School District 4 of the Los Angeles Unified School District. The Glassell Elementary School is located approximately 0.25 mile northeast of the project site. Also, Los Angeles High School #13 is located on Parcel F (a Sale Parcel) northeast of the project site. The nearest library to the project site is the Cypress Park Library.
located at 1150 Cypress Avenue, approximately 0.5 mile to the east. The Rio de Los Angeles State Park is immediately adjacent to the project site as well.

Analysis as to whether or not project activities would:

- Result in substantial adverse physical impacts associated with the provision of new or physically altered government facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the following public services:
 - Fire protection
 - Police protection
 - Schools
 - Parks
 - Other public facilities

Impact Analysis:

The remedial activities associated with the proposed project do not include new housing or non-residential development that would substantially increase the residential or employee populations in the area; thus, the demand for emergency services (i.e., fire protection and law enforcement) would not be substantially increased. In addition, the project site is currently served by existing fire prevention and suppression services and emergency medical services in case of any incidents. The project site would not generate new students or increase the demand on local school systems and libraries. The proposed project would also not affect the demand for public park and recreation facilities, such as the Rio de Los Angeles State Park. Therefore, the proposed project would not result in substantial adverse physical impacts associated with the provision of new or physically altered government facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services, as such a less than significant impact would occur.

Conclusion:

- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

References Used:

City of Los Angeles. ZIMAS. Available here: http://zimas.lacity.org/

15. Recreation

Project Activities Likely to Create an Impact: None.

Description of Baseline Environmental Conditions:

Approximately 730 acres of park lands and open spaces exist within a two mile radius of the project site, including the Rio de Los Angeles State Park, which abuts the project site. The Rio de Los Angeles State Park provides public recreational opportunities for the local community, such as soccer fields, basketball courts, nature trails, open space, and other sports fields as well as some passive recreation spaces such as picnic areas. The 600-acre Elysian Park, the second largest park in Los Angeles County, is located across the Los Angeles River southwest of the project site.

Other nearby recreation centers include the Elysian Valley Recreation center, located across the Los Angeles River; the Cypress Park Recreation Center located less than one mile to the south on San Fernando Road; and, Glassell Park and Recreation Center located one mile north of the project site on Verdugo Road.

Analysis as to whether or not project activities would:
a. Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated.

Impact Analysis:

No zoning or land use changes are being proposed as a result of project implementation. The proposed project activities do not include new residential or commercial development that would increase the use of existing neighborhood and regional parks or demand in the area for recreational facilities. The proposed project does not entail activities associated with recreation or movement of populations towards recreational facilities. Therefore, no increase in the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated by implementation of the proposed project, as such no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

b. Include recreational facilities or require construction or expansion of recreational facilities which might have an adverse physical effect on the environment.

Impact Analysis:

The proposed project does not include recreational facilities, nor would it require construction or expansion of recreational facilities which might have an adverse physical effect on the environment. Therefore, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

References Used:

City of Los Angeles. ZIMAS. Available here: http://zimas.lacity.org/

16. Transportation and Traffic

Project Activities Likely to Create an Impact:

- Data gaps investigation
- Demolition and removal of the existing foundation at the former Diesel Shop area
- Excavation and stockpiling of soil: loading excavated soils onto dump trucks for on-site management and onto gondola cars for off-site disposal
- Transport of soil to Site by truck for use as backfill of the site
- Site restoration including backfill and compaction of all excavated areas and grading of the project site
- Installation of deep soil remediation systems (vadose zone and groundwater monitoring Wells, bioventing, VES, and sub-slab venting systems)
- Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:
Regional access in the area is provided by State Route (SR)-2, Interstate (I)-5, and SR-110. The I-5 is the main north-south transportation corridor. Site access points are located at the main gate at the southern boundary of the project site, and a second gate at the northern boundary of the project site (which is shared with Parcel G-1), near the remaining active railroad tracks.

The Metro bus lines and Los Angeles Department of Transportation's Commuter Express and DASH serve the area, but mass transportation and multimodal transit options are limited, according to the Silver Lake-Echo Park-Elysian Valley Community Plan. Metrolink, Amtrak, and UP RR rail lines run between San Fernando Road and the Los Angeles River, then follow the Los Angeles after crossing the I-5 freeway. The main rail line separates Parcel D and Parcel G. There is also a service road that runs from San Fernando Road and passes under the main rail line. The service road from San Fernando Road would provide site access at the main gate at the southern boundary of the project site. The road currently provides access for maintenance operations associated with the Metro facility, the Los Angeles County's Department of Public Work's Los Angeles River flood control levee, LADWP electric transmission lines, oil lines, gas lines, and City storm drains as well as the UP RR Taylor Yard facility.

Analysis as to whether or not project activities would:

a. Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections).

Impact Analysis:

As part of the proposed project, a transportation plan would be developed to establish traffic-related procedures which shall be implemented by the remediation action contractor during excavation, loading, and off-site transportation of excavated soil and debris. While a more detailed transportation plan would be developed once the remedial design is finalized, the plan would be designed with the objectives of minimizing human health risk and assuring safety of project site workers. Materials targeted for on-site reuse, on-site consolidation, or off-site disposal may range in classification from non-hazardous to hazardous waste. Waste from the project site would be transported off-site by rail while clean backfill is expected to be transported on-site by trucks. It is anticipated that some of the excavated soil would be classified as hazardous waste and would require handling and disposal as such. The existing on-site rail system is proposed for transportation of the hazardous materials off-site using existing rail routes.

Traffic controls would be used to provide for the efficient completion of the work activities in a safe working environment while minimizing the impact on the normal traffic flow. Traffic controls would be required during excavation, transportation of soil on- and off-site, and backfilling and grading activities. All traffic control activities shall conform to the applicable specifications of the Manual of Traffic Controls for Construction and Maintenance Work Zones.

According to the Los Angeles Department of Transportation (LADOT) traffic volume database, the average daily traffic (ADT) for northbound and southbound vehicles at San Fernando Road and Division Street is 1,536 and 429, respectively. Thus, the total bi-directional ADT for San Fernando Road (at the intersection of Division Street) is 1,965. The vehicular traffic associated with the proposed project would consist of infrequent and temporary truck trips delivering equipment and materials, personnel and support vehicles, and trucks transporting materials on and off the project site. For example, following the completion of soil removal activities, approximately 25,400 cubic yards of soil would be required for import. During import of the material, a maximum of 138 trucks trips per day are anticipated to be added to local roadways. As a result, the vehicular traffic associated with excavation and soil disturbance would be minimal or negligible in relation to the existing traffic load and capacity of the street system. In addition, remedial activities would be temporary (i.e., limited to an estimated 10 months).

Operation is expected to consist of the ongoing operation of the remediation system and groundwater monitoring. Once installed, the remediation system would require very little maintenance and monitoring. Operation and maintenance activities associated with VES and sub-slab venting system will require weekly routine visits consisting of one or two people with a pick-up truck and occasional non-routine maintenance (two to four times year for carbon changeout) all of which would occur during daytime hours only. Ongoing groundwater monitoring activities would consist of approximately two pick-up trucks and downhole submersible sampling pumps to initially occur on a quarterly basis (four times a year) for approximately two to three days each sampling event.

Therefore, the proposed project would not cause a substantial increase in traffic in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections), as such a less than significant impact would occur.
Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

b. Exceed, either individually or cumulatively, a level of service standard established by the country congestion management agency for designated roads or highway.

Impact Analysis:

Metro adopted the Congestion Management Program (CMP) for Los Angeles County in 2010. According to the 2010 CMP (Chapter 5 of the CMP), a traffic impact analysis is required if the proposed project adds 50 or more trips to any CMP arterial segment or intersection during the weekday AM or PM peak hours. The vehicular traffic would consist of infrequent and temporary truck trips delivering equipment and materials, personnel and support vehicles, and trucks transporting materials on and off the project site. Following the completion of soil removal activities, approximately 25,400 cubic yards of soil would be required for import. During import of the material, a maximum of 136 trucks per day are anticipated to be added to local roadways. Construction is anticipated to be scheduled between 7:00 a.m. and 5:00 p.m., Monday through Friday. The maximum number of construction truck trips is anticipated during the AM and PM peak hours (weekday AM peak is 7:00 a.m. to 9:00 a.m. and PM peak is from 4:00 p.m. to 6:00 p.m.). Although the rate of construction truck trips during the AM and PM peak is approximately 25 percent higher than the normal hours of construction, it is expected to be lower than the 2010 CMP's 50 peak hour trip threshold for conducting a traffic impact analysis. Hence, the proposed project is not anticipated to add 50 or more trips during the weekday AM or PM peak hours and no traffic impact analysis is required. Therefore, the proposed project would not exceed, either individually or cumulatively, a level of service standard established by the country congestion management agency for designated roads or highway, as such a less than significant impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

c. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

Impact Analysis:

Within the project site, trucks would enter and exit excavation areas in safe and planned manner. Stockpiling area and gondola loading area would be easily accessible located near the project site entrance. No materials or equipment would be stored where it would interfere with the free and safe passage of motorists, pedestrians and visitors to the adjacent Rio de Los Angeles State Park. If the construction operations create potential hazardous conditions to traffic, fences, signs, and other devices would be used to prevent accidents or injury to motorists, pedestrians, and park visitors. The access intersections on San Fernando Road would not create a hazard to traffic or pedestrians. All equipment would be used for its intended purpose and would not be used for incompatible purposes. After excavation and cap installation activities are complete, the project site would be restored to its original conditions. Therefore, the proposed project would not substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment), as such no impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

d. Result in inadequate emergency access.

Impact Analysis:

Standard trucks and rail cars would be used for hauling debris, soil, and equipment, and would not interfere with the passage of emergency vehicles within the project site because all access roads would remain open during remedial
activities. In addition, construction and stored equipment would not obstruct access or visibility to residences. Two-way traffic would be maintained on San Fernando Road throughout the implementation of the proposed project. Access for emergency vehicles and for all homes and businesses would also be maintained throughout the life of the proposed project. Accordingly, the proposed project would not result in inadequate emergency access; as such a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

a. Result in inadequate parking capacity.

Impact Analysis:

The project site is former rail yard that is vacant and not in use. Therefore, temporary parking of construction staff and staging of equipment and trucks would be provided solely onsite. The proposed project would not result in inadequate parking capacity; therefore, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

f. Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).

Impact Analysis:

The project site is a former rail yard and does not support alternative transportation. The proposed project would not conflict with adopted policies, plans, or programs supporting alternative transportation; therefore, no impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☐ Less Than Significant Impact
☒ No Impact

References Used:

Utilities and Service Systems

Project Activities Likely to Create an Impact:

• Remedial activities
• Remediation systems operations & maintenance and continued groundwater monitoring

Description of Baseline Environmental Conditions:

The LADWP has responsibility for the city's water and power facilities. Currently, aboveground power lines exist along the northeast bank of the Los Angeles River between the bank and the rail lines of the project site. The power transmission lines are supported by steel-frame towers with spacing approximately 600 to 800 feet apart.
Several telecommunication lines run along the southwest side of the active rail line parallel to the northeast border of the project site. Telecommunications utilities include a US Sprint Fiber System which consists of a bundle of four 2-inch PVC conduits, one of which is vacant, and the other three used by MCI, Sprint, and AT&T, respectively. In addition, Qwest telecommunication cables run separate but almost parallel to these conduits. The Qwest cables consist of four 1 1/4-inch and two 2-inch diameter lines that are about 2 to 3 feet below ground surface.

Southern California Gas Company (SoCalGas) provides gas to the residential, commercial, and industrial markets of Los Angeles. A 10-inch diameter pipeline owned by Southern Pacific Pipe Lines Inc. runs almost parallel to the railroad alignment and connects to tanks located within Taylor Yard. The existing cover is about 50 inches to 55 inches. However, this facility is currently idle and under nitrogen gas pressure. A 20-inch diameter HP crude pipeline owned by Pacific Pipeline System, LLC also runs almost parallel to the railroad alignment. The existing cover is about 4 feet at the minimum.

Stormwater is absorbed into the ground or flows into the Los Angeles River. There are several storm drains that cross Taylor Yard at various depths below ground surface. A storm drain runs along Eagle Rock Boulevard then transitions to an arch section, and terminates as a reinforced concrete box (RCB) under the UPRR Taylor Yard right of way. The capital discharge for this storm drain is 4,550 cfs.

A 24-inch-diameter cement pipe sewer line runs underneath/across the project site from Eagle Rock Boulevard to Newell Street, and then crosses the Los Angeles River in a coupled (2 1/2-inch and 15-inch) vitrified clay line. Another sewer line is located at the northern end of Taylor Yard along Kerr Street.

The City of Los Angeles' Bureau of Sanitation provides solid waste collection and recycling, household hazardous waste handling, and the operation and maintenance of city of Los Angeles landfills. The Bureau's wastewater program provides collection, conveyance, treatment, and disposal services.

Analysis as to whether or not project activities would:

a. Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board.

Impact Analysis:

Based on the type of remedial activities associated with the proposed project, a minor amount of wastewater (less than 100 gallons a day) could be generated during construction. In addition, construction would involve the use of portable restroom facilities at the construction site, which would be removed from the project site by a contractor and disposed of off-site. Wastewater generated at the project site would be either temporarily contained in onsite containers (drums, tanks etc.) and disposed at a licensed off-site facility or collected and transported through local, trunk, and mainline sewers to the Hyperion Treatment Plant (HTP) in Playa Del Rey. The HTP currently provides wastewater treatment for nearly all of the City of Los Angeles. The wastewater may also be collected, tested for contaminants, and then placed in a vacuum truck for off-site disposal.

Wastewater that may enter the excavation site would drain to the catch basin, which is pumped up to the Pollock Wells Treatment Plant, located just west of the intersection of the I-2 and the Los Angeles River. This facility handles rainwater, oil, grease, diesel fuel spill, and sand. The treatment facility would remove groundwater contaminants, primarily trichloroethylene and perchloroethylene. Following treatment, the water is chlorinated before entering the distribution system, where it is blended with water from other LADWP sources. In addition, operation and maintenance of the remediation systems and ongoing groundwater monitoring would involve only limited amounts of wastewater during sampling events.

The quality of wastewater from the project site is expected to be typical and would not exceed wastewater treatment requirements of the LARWQCB. Therefore, the proposed project would not exceed wastewater treatment requirements of the applicable RWQCB, as such a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact
b. Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.

Impact Analysis:

The wastewater generated by the proposed project (i.e. from remedial activities, if any, and portable restroom facilities) would represent a fractional percentage of the HTP daily treatment capacity. HTP could adequately accommodate additional wastewater generated by the proposed project. In addition, there is enough capacity in the sewer systems for wastewater flow. Therefore, implementation of the proposed project would not require or result in the construction of new water or wastewater treatment or expansion of existing facilities the construction of which could cause significant environmental effects and no impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

c. Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects.

Impact Analysis:

Refer to Section Hydrology and Water Quality (e) above.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

d. Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed.

Impact Analysis:

The proposed project would require water for rinsing off equipment and for dust control and suppression. As needed, water would be brought in through the existing water supply infrastructure provided by LADWP or via truck to the project site. The water needed for dust control and rinsing is minimal and would not exceed available supplies. Therefore, no new or expanded entitlements or resources would be necessary, as such a less than significant impact would occur.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

e. Result in determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the projects projected demand in addition to the providers existing commitments.

Impact Analysis:

See response to (b) above.

Conclusion:
- Potentially Significant Impact
- Potentially Significant Unless Mitigated
- Less Than Significant Impact
- No Impact

f. Be served by a landfill with sufficient permitted capacity to accommodate the projects solid waste disposal needs.
Impact Analysis:

Upon appropriate waste profiling and segregation, trucks would be used to move excavated soil from the stockpiling areas onto gondola cars on the adjacent rail for transportation to the ECDC disposal facility in East Carbon, Utah. Each gondola car would be appropriately labeled, loaded, cleaned, covered, and weighed in conformance to the California Department of Transportation’s regulations prior to being transported off-site.

Construction contractors would be encouraged to recycle demolition debris and construction materials. However, material generated during excavation activities would be characterized and (if necessary) disposed of at a permitted off-site landfill/recycler in accordance with all applicable laws and regulations. Construction contractors would be encouraged to recycle demolition debris and construction materials. It is anticipated that all solid waste generated by the proposed project would be taken to the Sunshine Canyon Landfill. The Sunshine Canyon Landfill is a Class III landfill located at 14747 San Fernando Road in Sylmar, California, approximately 22 miles from the project site. Sunshine Canyon Landfill is owned and operated by BFI, and has a maximum permitted throughput of 12,100 tons per day, with 5,500 tons per day allotted for City use and 6,600 for County use. As of July 31, 2007, this facility had a remaining capacity of 112,300,000 cubic yards, and currently has an estimated closure date of 2037. The waste types accepted at this facility include construction and demolition debris, green materials, industrial, inert, and mixed municipal. The landfills serving the project site would have adequate capacity for the expected waste. Therefore, the proposed project would be served by existing landfills with sufficient permitted capacity to accommodate the proposed projects solid waste disposal needs; as such, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

g. Comply with federal, state, and local statutes and regulations related to solid waste.

Impact Analysis:

See response 16(f) above. The construction phase of the proposed project would operate in accordance with these applicable Solid Waste Management Policy Plans and the California Integrated Waste Management Act of 1989, which emphasizes resource conservation through reduction, recycling, and reuse of solid waste, by including recycling activities where feasible. As noted above, the proposed project would be served by a landfill with sufficient permitted capacity to accommodate the projects solid waste disposal needs during excavation and soil removal activities and would comply with federal, state, and local statutes and regulations related to solid waste. Therefore, a less than significant impact would occur.

Conclusion:

☐ Potentially Significant Impact
☐ Potentially Significant Unless Mitigated
☒ Less Than Significant Impact
☐ No Impact

References Used:

Mandatory Findings of Significance

Based on evidence provided in this Initial Study, DTSC makes the following findings:

a. The project \(\square \) does not have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory.

The proposed project would remove impacted soil from the project sites and replace it with clean, imported soil. Thereby, it would have a positive impact on the environment by eliminating potential exposure to contaminated material. The project area has no historic structures, hence no artifacts of California history or pre-history are affected. There are also no identified endangered species in the project area. The project area would be temporarily disturbed for the duration of the remediation activities (approximately 10 months). As discussed more fully in the sections for Air Quality, Biological Resources, Cultural Resources, and Hazardous Materials, the remedial activities and subsequent operation and maintenance of the remediation systems and ongoing groundwater monitoring are not expected to result in the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory. Therefore, a less than significant would occur.

b. The project \(\square \) does not have impacts that are individually limited but cumulatively considerable. "Cumulatively considerable" means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.

Proper engineering and administrative controls, employee training, and adherence to local, state, and federal safety regulations would help ensure that there are no threats to human health and the environment during implementation. In addition, the scheduling of the remediation activities would be designed to limit overall truck traffic on San Fernando Road.

The concurrent projects considered for cumulative effects are summarized in Table 7 and shown in Figure 3. "Cumulatively considerable" means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. The proposed project would not result in impacts that are individually limited nor would the proposed project be expected to result in cumulatively considerable impacts.

<table>
<thead>
<tr>
<th>Project Name, Location</th>
<th>Description</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Police Academy Renovation, 1880 N. Academy Drive, Los Angeles</td>
<td>The scope of this project is based on a facilities assessment report which identified deficiencies with the electrical, architectural, structural, mechanical and plumbing systems within the buildings and site along with associated site improvements and underground utilities.</td>
<td>Project is in the Design phase. Construction is expected to start in Spring 2014.</td>
</tr>
<tr>
<td>New Northeast Area Police Station, 3353 San Fernando Road, Los Angeles</td>
<td>Design and construct a new 53,000 sq. ft. police station on existing site including new communication tower. Existing fuel gas station would remain and garage repair facility would be reconfigured, rehabilitated and remain in service. San Fernando Road would</td>
<td>Contractor bids/work selection in progress.</td>
</tr>
<tr>
<td>Project Description</td>
<td>Details</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>North Central Animal Care Center Phase II, 3201 Lacy Street, Los Angeles</td>
<td>Tenant Improvement for an existing Animal Shelter, located at 3201 N. Lacy Street. Design of phase II works for existing North Central Animal Shelter. Scope of work includes the following: medical area, office area, community/training room, public animal receiving, animal holding area, field enforcement area, clerical and volunteer area, lobby area and staff parking area.</td>
<td>The project is in Design Phase.</td>
</tr>
<tr>
<td>Central City/Elysian Water Recycling Project, near the eastern boundary of the Los Angeles River</td>
<td>The project consists of piping, pumps and storage for recycled water and is designed to deliver up to 1,000 acre feet per year to Elysian Park, Taylor Yard, and other uses between these sites.</td>
<td>The project is expected to be completed in two phases with Taylor Yard coming online in 2011 and Elysian Park by the middle of 2014.</td>
</tr>
<tr>
<td>Albion Dairy Demolition and Remediation & Albion Riverside Park Project, 1739 Albion Street, Los Angeles</td>
<td>The project would assist in improving water quality and would support the City’s efforts to comply with current and future Total Maximum Daily Load stormwater regulations. Three phases (demolition/remediation, water quality elements, and park improvements)</td>
<td>Phase 1 (demolition/remediation) began in 2011; Phase 2 (water quality elements) are proposed for 2013; and Phase 3 (park improvements) are proposed for 2015 to 2016.</td>
</tr>
<tr>
<td>North Spring Street Viaduct Widening and Rehabilitation Project</td>
<td>The proposed project would include seismically upgrading and widening the existing viaduct, improving pedestrian and bicycle facilities, reconfiguring the intersection of Baker Street and North Spring Street, creating a northwesterly extension of Wilhardt Street to connect Wilhardt Street to Baker Street, and the creating a cul-de-sac by closing Aurora Street and its existing intersection with North Spring Street.</td>
<td>Construction is anticipated to be completed by end of 2015.</td>
</tr>
<tr>
<td>Los Angeles River Revitalization Master Plan</td>
<td>The master plan is a 20-year blueprint for development and management of the Los Angeles River.</td>
<td>The City of Los Angeles is in the process of implementing river revitalization projects through coordination with its various City entities.</td>
</tr>
<tr>
<td>California High Speed Rail Project</td>
<td>2028 Palmdale–Los Angeles and San Francisco–San Jose. These segments, when complete, would allow a single seat, high speed ride from San Francisco to Los Angeles Union Station. CHSRA calls the resulting level of service "Phase 1 Blended."</td>
<td>Date of project completion is projected for 2028.</td>
</tr>
</tbody>
</table>

c. The project □ has □ does not have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly.

The impacts on the individual resources were examined and discussed in this Initial Study. Air quality, hazards and hazardous materials, hydrology and water quality, noise, solid/hazardous waste, and transportation/traffic would not be adversely affected as a result of the proposed project. Proper engineering administrative controls, employee training, and adherence to local, state, and federal safety regulations would help to ensure that there are no releases to the environment. The remedial activities would be conducted under the oversight of DTSC. Therefore, the proposed project...
would not have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly.

Determination of Appropriate Environmental Document:

Based on evidence provided in this Initial Study, DTSC makes the following determination:

☒ The proposed project COULD NOT HAVE a significant effect on the environment. A Negative Declaration will be prepared.

☐ The proposed project COULD HAVE a significant effect on the environment. However, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A Mitigated Negative Declaration will be prepared.

☐ The proposed project MAY HAVE a significant effect on the environment. An Environmental Impact Report is required.

☐ The proposed project MAY HAVE a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An Environmental Impact Report is required, but it must analyze only the effects that remain to be addressed.

☐ The proposed project COULD HAVE a significant effect on the environment. However, all potentially significant effects (a) have been analyzed adequately in an earlier Environmental Impact Report or Negative Declaration pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier Environmental Impact Report or Negative Declaration, including revisions or mitigation measures that are imposed upon the proposed project. Therefore, nothing further is required.

Certification:

I hereby certify that the statements furnished above and in the attached exhibits, present the data and information required for this Initial Study evaluation to the best of my ability and that the facts, statements and information presented are true and correct to the best of my knowledge and belief.

Preparer's Signature
Jessy Fierro
Hazardous Substances Scientist
Preparer's Name
Preparer's Title
Phone #
(818) 717-6563
Date
10-7-13

Branch or Unit Chief Signature
Julii Propes
Senior Hazardous Substance Geologist
Branch or Unit Chief Name
Branch or Unit Chief Title
Phone #
(818) 717-6539
Date
10-7-13
FIGURES
1. Police Academy Renovation
2. New Northeast Area Police Station
3. North Central Animal Care Center Phase II
4. Cantil City/Elysian Water Recycling Project
5. Allen Dairy Demolition and Renovation & Allen shovel/Pre Park Project
6. North Flying Street Viaduct Widening and Rehabilitation Project
7. Los Angeles River Revitalization Master Plan
8. California High Speed Rail Project

Union Pacific Railroad
Taylor Yard - South Pacific Sites (Parcel G-2)
Initial Study

Figure 3 - Related Projects
APPENDIX A

AIR QUALITY AND GREENHOUSE GAS EMISSIONS CALCULATIONS AND CALEEMOD OUTPUT
Taylor Yard Parcel G-2 Project Initial Study

Criteria Pollutants Emissions Summary

<table>
<thead>
<tr>
<th>Activity Phase</th>
<th>CO</th>
<th>NOx</th>
<th>ROG</th>
<th>SOX</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Calls Investigation Total</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Construction Equipment/Excavation</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Excavation</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site Vehicles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Removal of Existing Concrete Total</td>
<td>18</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Construction/Excavitation</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Excavation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site Vehicles</td>
<td>12</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Backfill/Grading Total</td>
<td>27</td>
<td>68</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Construction Equipment</td>
<td>11</td>
<td>21</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Site Vehicles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rail</td>
<td>9</td>
<td>48</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Well Installation Total</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Construction Equipment</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site Vehicles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>48</td>
<td>82</td>
<td>16</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Construction Equipment</td>
<td>43</td>
<td>81</td>
<td>16</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Site Vehicles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spokane Threshold</td>
<td>100</td>
<td>190</td>
<td>70</td>
<td>1</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Exceeding Thresholds?</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Maximum Daily Emissions Summary

<table>
<thead>
<tr>
<th>Activity Phase</th>
<th>Maximum Daily Construction Emissions (lb/day)</th>
<th>Maximum Daily Operational Emissions (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Calls Investigation Total</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td>Removal of Existing Concrete Total</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Excavation</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Backfill/Grading Total</td>
<td>27</td>
<td>68</td>
</tr>
<tr>
<td>Well Installation Total</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Spokane Threshold</td>
<td>100</td>
<td>190</td>
</tr>
<tr>
<td>Exceeding Thresholds?</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Greenhouse Gas Emissions Summary

<table>
<thead>
<tr>
<th>Activity Phase</th>
<th>Annual GHG Emissions (metric tones/year)</th>
<th>Global Warming Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction</td>
<td>1,160 CO2, 2 CH4, 0.3 NOx</td>
<td>CO2: 1</td>
</tr>
<tr>
<td>Amortized Construction</td>
<td>387 CO2, 0.005 CH4, 0.001 NOx</td>
<td>CH4: 21</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>1,547 CO2, 0.01 CH4, 0.001 NOx</td>
<td>N2O: 310</td>
</tr>
<tr>
<td>Spokane Project Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spokane Threshold</td>
<td>169 CO2, 0.003 CH4, 0.001 NOx</td>
<td></td>
</tr>
<tr>
<td>Exceeding Thresholds?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions used in the emissions calculations:
1. Calculated emissions include dust control by watering 3 times a day.
2. Construction phases do not overlap.
3. Localized Significance Thresholds (LSTs) from published 1-hour LSTs for sites 1.6 km from the receptor in Central Los Angeles Source-Receptor Area.
4. Amortized construction emissions is the total construction emissions divided by 30 years.

Project Lifespan: 30 years
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Metro</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Industrial</td>
<td>50.00</td>
<td>User Defined Unit</td>
<td>50.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanization</td>
<td>Urban</td>
</tr>
<tr>
<td>Wind Speed (m/s)</td>
<td>2.2</td>
</tr>
<tr>
<td>Precipitation Freq (Days)</td>
<td>33</td>
</tr>
<tr>
<td>Climate Zone</td>
<td>11</td>
</tr>
<tr>
<td>Operational Year</td>
<td>2014</td>
</tr>
<tr>
<td>Utility Company</td>
<td>Los Angeles Department of Water & Power</td>
</tr>
<tr>
<td>CO2 Intensity (lb/MWhr)</td>
<td>1227.89</td>
</tr>
<tr>
<td>CH4 Intensity (lb/MWhr)</td>
<td>0.029</td>
</tr>
<tr>
<td>N2O Intensity (lb/MWhr)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Zip Code 90065

Land Use - 50 acre lot.

Construction Phase - Data/gaps investigation - 3 weeks; Removal of existing concrete - 2 weeks; Excavation - 8 weeks; Backfill/grading - 5 weeks; Well installation - 2 weeks; Installation of piping and SVE, bioventing, sub slab venting, and vapor barrier systems - 20 weeks.

Off-road Equipment - Data/Gaps Investigation: 1 Geoprobe-Push Rig.

Off-road Equipment - Removal of Existing Concrete: 1 Excavator, 1 Front End Loader.

Off-road Equipment - Excavation: 1 Excavator, 1 Dump Truck, 1 Front End Loader.

Off-road Equipment - Backfill/Grading: 1 Compactor, 1 Dozer, 1 Grader.

Off-road Equipment - Well Installation: 2 Drill Rigs.

Off-road Equipment - Installation of piping and SVE, bioventing, sub slab venting, and vapor barrier systems: 2 Excavators, 2 Dump Trucks, 1 Off-road Water Truck, 2 Compactors, 2 Graders, 2 HDPE Pipe Welder, 2 Membrane Spray Machines.

Grading - 25,400 cy exported contaminated soil. 25,400 cy imported clean fill.
Trips and VMT - Data Gaps Investigation: 4 workers, 1 mobile lab; Removal of Existing Concrete: 4 workers, 200 haul trips, water truck; Excavation: 6 workers, water truck; Backfill/Grading: 6 workers, water truck, 1,588 haul trips; Well Installation: 5 workers; Venting System Installation: 15 workers.

Vehicle Trips - Calculated outside of CalEEMod.
Energy Use - 5226 kWh/year used by blower.
Water And Wastewater - No water use.
Solid Waste - No solid waste generation.
Construction Off-road Equipment Mitigation - Watering is required by SCAQMD Rule 403 and is not mitigation.
Landscape Equipment - No landscaping.

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Total PM10</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>Total PM2.5</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
</table>

3.0 Construction Detail

<table>
<thead>
<tr>
<th>Phase Number</th>
<th>Phase Name</th>
<th>Phase Type</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days/Week</th>
<th>Num Days</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Gaps Investigation</td>
<td>Site Preparation</td>
<td>3/27/2014</td>
<td>4/15/2014</td>
<td>5</td>
<td>15</td>
<td>Site Preparation</td>
</tr>
<tr>
<td>2</td>
<td>Removal of Existing Concrete</td>
<td>Site Preparation</td>
<td>4/15/2014</td>
<td>4/23/2014</td>
<td>5</td>
<td>20</td>
<td>Site Preparation</td>
</tr>
<tr>
<td>5</td>
<td>Well Installation</td>
<td>Site Preparation</td>
<td>7/23/2014</td>
<td>8/13/2014</td>
<td>5</td>
<td>10</td>
<td>Site Preparation</td>
</tr>
<tr>
<td>6</td>
<td>Venting System Installation</td>
<td>Grading</td>
<td>8/12/2014</td>
<td>12/31/2014</td>
<td>0</td>
<td>100</td>
<td>Grading</td>
</tr>
</tbody>
</table>
OffRoad Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of Existing Concrete</td>
<td>Excavators</td>
<td>1</td>
<td>8</td>
<td>162</td>
<td>0.36</td>
</tr>
<tr>
<td>Excavation</td>
<td>Off-Highway Trucks</td>
<td>1</td>
<td>8</td>
<td>400</td>
<td>0.36</td>
</tr>
<tr>
<td>Excavation</td>
<td>Excavators</td>
<td>1</td>
<td>8</td>
<td>162</td>
<td>0.36</td>
</tr>
<tr>
<td>Well Installation</td>
<td>Bore/Drill Rigs</td>
<td>2</td>
<td>8</td>
<td>305</td>
<td>0.5</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Off-Highway Trucks</td>
<td>3</td>
<td>8</td>
<td>405</td>
<td>0.36</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Plate Compactors</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>0.43</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Welders</td>
<td>2</td>
<td>8</td>
<td>48</td>
<td>0.45</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Air Compressors</td>
<td>2</td>
<td>8</td>
<td>78</td>
<td>0.46</td>
</tr>
<tr>
<td>Excavation</td>
<td>Trenching/Loosening/Backholes</td>
<td>1</td>
<td>8</td>
<td>0.5</td>
<td>0.37</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>Excavators</td>
<td>3</td>
<td>8</td>
<td>162</td>
<td>0.36</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Graders</td>
<td>2</td>
<td>8</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Backpack/Grading</td>
<td>Graders</td>
<td>2</td>
<td>8</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Rubber Tired Dozers</td>
<td>2</td>
<td>8</td>
<td>255</td>
<td>0.6</td>
</tr>
<tr>
<td>Data/Gaps Investigation</td>
<td>Bore/Drill Rigs</td>
<td>1</td>
<td>8</td>
<td>205</td>
<td>0.6</td>
</tr>
<tr>
<td>Backpack/Grading</td>
<td>Rollers</td>
<td>1</td>
<td>8</td>
<td>80</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Count</th>
<th>Work Veh. Trip Number</th>
<th>Vendor Veh. Trip Number</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data/Gaps Investigation</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>400</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
<tr>
<td>Backpack/Grading</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>3,172.00</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
<tr>
<td>Well Installation</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>13</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>6.5</td>
<td>28LD_Mix</td>
<td>HDT_Mix</td>
<td>HDT</td>
<td></td>
</tr>
</tbody>
</table>
3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

3.2 Data Gaps Investigation - 2014

Unmitigated Construction Off-Site

| Category | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhausted PM10 | PM10 Total | Fugitive PM2.5 | Exhausted PM2.5 | PM2.5 Total | Bio-CO2 | N2O-CO2 | Total CO2 | CH4 | N2O | CO2e |
|-----------------|-----|-----|----|-----|-------------|---------------|------------|---------------|----------------|-------------|---------|--------|---------|-------|-----|------|------|
| Hauling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Vendor | 0.0466 | 0.0022 | 1.06 | 0.0139 | 0.0326 | 0.0386 | 0.0093 | 0.0429 | 0.0310 | 0.0429 | 0.0524 | 0.0200 | 0.0552 | 0.0200 | 0.0552 |
| Worker | 0.1212 | 0.0051 | 0.0720 | 0.0094 | 0.0066 | 0.0066 | 0.0094 | 0.0066 | 0.0066 | 0.0066 | 0.0114 | 0.0070 | 0.0114 | 0.0070 | 0.0114 |
| Total | 0.2648 | 0.0073 | 1.13 | 0.0233 | 0.0492 | 0.0492 | 0.0187 | 0.0526 | 0.0526 | 0.0526 | 0.0638 | 0.0270 | 0.0638 | 0.0270 | 0.0638 |

Mitigated Construction On-Site

| Category | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhausted PM10 | PM10 Total | Fugitive PM2.5 | Exhausted PM2.5 | PM2.5 Total | Bio-CO2 | N2O-CO2 | Total CO2 | CH4 | N2O | CO2e |
|-----------------|-----|-----|----|-----|-------------|---------------|------------|---------------|----------------|-------------|---------|--------|---------|-------|-----|------|------|
| Fugitive Dust | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Off-Road | 0.1212 | 0.0051 | 0.0720 | 0.0094 | 0.0066 | 0.0066 | 0.0094 | 0.0066 | 0.0066 | 0.0066 | 0.0114 | 0.0070 | 0.0114 | 0.0070 | 0.0114 |
| Total | 0.2424 | 0.0073 | 1.13 | 0.0233 | 0.0490 | 0.0490 | 0.0187 | 0.0526 | 0.0526 | 0.0526 | 0.0638 | 0.0270 | 0.0638 | 0.0270 | 0.0638 |
3.3 Removal of Existing Concrete - 2014
Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Hb-Co2</th>
<th>Nilto-Co2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N20</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healing</td>
<td>2.106</td>
<td>14.4226</td>
<td>5.1884</td>
<td>0.03</td>
<td>0.0694</td>
<td>0.2390</td>
<td>0.5059</td>
<td>0.1907</td>
<td>0.2412</td>
<td>0.4219</td>
<td>3.0820</td>
<td>3.0820</td>
<td>0.0213</td>
<td>3.0611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0405</td>
<td>0.2242</td>
<td>0.2401</td>
<td>4.4952</td>
<td>0.0129</td>
<td>4.3123</td>
<td>0.0188</td>
<td>3.8865</td>
<td>0.3865</td>
<td>3.9230</td>
<td>45.0214</td>
<td>35.0214</td>
<td>4.1041</td>
<td>45.0229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.1641</td>
<td>0.0250</td>
<td>0.6703</td>
<td>1.1652</td>
<td>0.0304</td>
<td>0.0906</td>
<td>0.0934</td>
<td>0.0637</td>
<td>0.0637</td>
<td>0.1274</td>
<td>0.0489</td>
<td>0.0489</td>
<td>6.3250</td>
<td>104.9735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.37</td>
<td>14.7416</td>
<td>10.4196</td>
<td>0.6316</td>
<td>0.7902</td>
<td>0.2752</td>
<td>1.0744</td>
<td>0.2733</td>
<td>0.2531</td>
<td>0.4714</td>
<td>3.2364</td>
<td>3.2364</td>
<td>0.0345</td>
<td>3.2371</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Hb-Co2</th>
<th>Nilto-Co2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N20</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.7912</td>
<td>8.681</td>
<td>8.8421</td>
<td>8.406</td>
<td>0.5256</td>
<td>0.5256</td>
<td>0.4835</td>
<td>0.4835</td>
<td>0.4835</td>
<td>0.4835</td>
<td>931.4688</td>
<td>931.4688</td>
<td>0.5934</td>
<td>897.6011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.7912</td>
<td>8.581</td>
<td>9.8421</td>
<td>8.406</td>
<td>0.5256</td>
<td>0.5256</td>
<td>0.4835</td>
<td>0.4835</td>
<td>0.4835</td>
<td>0.4835</td>
<td>931.4688</td>
<td>931.4688</td>
<td>0.5934</td>
<td>897.6011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 Excavation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROS</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>NOx</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Relying</td>
<td>0.0403</td>
<td>0.0252</td>
<td>0.2461</td>
<td>4.402E-06</td>
<td>0.00129</td>
<td>4.038E-03</td>
<td>0.0168</td>
<td>0.005E-03</td>
<td>3.335E-03</td>
<td>4.1E-04</td>
<td>4.1E-04</td>
<td>4.1E-04</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.2911</td>
<td>0.0325</td>
<td>1.0142</td>
<td>1.74E-03</td>
<td>0.1344</td>
<td>1.646E-03</td>
<td>0.1036</td>
<td>0.00389</td>
<td>1.331E-03</td>
<td>1.557E-03</td>
<td>1.557E-03</td>
<td>1.557E-03</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.3316</td>
<td>0.3083</td>
<td>1.2604</td>
<td>2.13E-03</td>
<td>0.1468</td>
<td>1.71E-03</td>
<td>0.1324</td>
<td>0.00391</td>
<td>5.29E-03</td>
<td>6.044E-03</td>
<td>6.044E-03</td>
<td>6.044E-03</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.3316</td>
<td>0.3083</td>
<td>1.2604</td>
<td>2.13E-03</td>
<td>0.1468</td>
<td>1.71E-03</td>
<td>0.1324</td>
<td>0.00391</td>
<td>5.29E-03</td>
<td>6.044E-03</td>
<td>6.044E-03</td>
<td>6.044E-03</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROS</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>NOx</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.002</td>
<td>0.005</td>
<td>0.028</td>
<td>4.24E-03</td>
<td>0</td>
<td>4.24E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Roads</td>
<td>1.045</td>
<td>21.331</td>
<td>114.902</td>
<td>0.0219</td>
<td>1.0306</td>
<td>1.0306</td>
<td>0.0259</td>
<td>0.9259</td>
<td>0</td>
<td>2.287E-05</td>
<td>2.287E-05</td>
<td>2.287E-05</td>
<td>0.0759</td>
<td>10</td>
<td>2.301E-04</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.045</td>
<td>21.331</td>
<td>114.902</td>
<td>0.0219</td>
<td>1.0306</td>
<td>1.0306</td>
<td>0.0259</td>
<td>0.9259</td>
<td>0</td>
<td>2.287E-05</td>
<td>2.287E-05</td>
<td>2.287E-05</td>
<td>0.0759</td>
<td>10</td>
<td>2.301E-04</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Backfill/Grading - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Sox CO2</th>
<th>NOx CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>6.7622</td>
<td>45.5143</td>
<td>30.1391</td>
<td>0.8852</td>
<td>2.3176</td>
<td>0.0572</td>
<td>3.0888</td>
<td>0.8075</td>
<td>0.7886</td>
<td>1.394</td>
<td>9.7639</td>
<td>9.7639</td>
<td>0.0865</td>
<td>9.7656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0135</td>
<td>0.2262</td>
<td>0.2161</td>
<td>4.408564</td>
<td>0.0125</td>
<td>1.5154-03</td>
<td>0.0168</td>
<td>2.556-03</td>
<td>3.166-03</td>
<td>7.586-09</td>
<td>49.8214</td>
<td>49.8214</td>
<td>4.152-04</td>
<td>45.9699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0101</td>
<td>0.0128</td>
<td>1.0142</td>
<td>1.745-03</td>
<td>0.1351</td>
<td>1.446-03</td>
<td>0.1359</td>
<td>0.0396</td>
<td>0.315-03</td>
<td>0.0309</td>
<td>197.2613</td>
<td>197.2613</td>
<td>9.965-03</td>
<td>197.4603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.1839</td>
<td>46.7231</td>
<td>31.5947</td>
<td>0.9974</td>
<td>2.3592</td>
<td>0.2533</td>
<td>3.2272</td>
<td>0.6446</td>
<td>0.7937</td>
<td>1.4364</td>
<td>9.956-08</td>
<td>9.956-08</td>
<td>0.0964</td>
<td>9.95811</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Sox CO2</th>
<th>NOx CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.4094</td>
<td>0</td>
<td>0.4994</td>
<td>1.5327</td>
<td>0</td>
<td>1.5327</td>
<td>0</td>
<td>0.4094</td>
<td>0</td>
<td>0.4094</td>
<td>0</td>
<td>0</td>
<td>0.4094</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GE-Road</td>
<td>2.706</td>
<td>28.5454</td>
<td>18.3589</td>
<td>0.0177</td>
<td>1.3441</td>
<td>1.0497</td>
<td>1.4938</td>
<td>0</td>
<td>1.696-03</td>
<td>1.696-03</td>
<td>0</td>
<td>1.696-03</td>
<td>0</td>
<td>1.696-03</td>
<td>0</td>
<td>1.696-03</td>
</tr>
<tr>
<td>Total</td>
<td>2.706</td>
<td>28.5454</td>
<td>18.3589</td>
<td>0.0177</td>
<td>1.5454</td>
<td>7.6393</td>
<td>1.6327</td>
<td>1.4296</td>
<td>3.0323</td>
<td>0</td>
<td>1.844.43</td>
<td>1.84443</td>
<td>0.5569</td>
<td>1.89512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6 Well Installation - 2014

Unmitigated Construction Off-Site

| Category | ROX | NOx | CO | CO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NOx- CO2 | Total CO2 | CH4 | NOx | CO2x |
|-------------------|-----|-----|-----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|----------|----------|--------|-----|-----|------|
| Historic | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0 | | |
| Vendor | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0 | | |
| Worksite | 0.2428 | 0.0660 | 0.8492 | 1.4455-63 | 0.1126 | 1.2662-63 | 0.118 | 0.0286 | 0.101-63 | 0.0397 | 0.0651 | 0.0651 | 2.562-60 | 131.2169 |
| Total | 0.2428 | 0.0660 | 0.8492 | 1.4455-63 | 0.118 | 1.2662-63 | 0.118 | 0.0286 | 0.101-63 | 0.0397 | 0.0651 | 0.0651 | 2.562-60 | 131.2169 |

Mitigated Construction On-Site

| Category | ROX | NOx | CO | CO2 | Fugitive Dust | Exhaust Dust | Dust Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NOx- CO2 | Total CO2 | CH4 | NOx | CO2x |
|-------------------|-----|-----|-----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|----------|----------|--------|-----|-----|------|
| Fugitive Dust | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0 | | |
| Off-Road | 0.788 | 12.7215 | 4.2623 | 4.0441 | 0.0375 | 0.3759 | 0.3759 | 0.3486 | 0.3486 | 0.6972 | 1.386-69 | 1.386-69 | 0.5469 | 1.852-18 |
| Total | 0.788 | 12.7215 | 4.2623 | 4.0441 | 0.0375 | 0.3759 | 0.3759 | 0.3486 | 0.3486 | 0.6972 | 1.386-69 | 1.386-69 | 0.5469 | 1.852-18 |
3.7 Venting System Installation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>SOx CO2</th>
<th>NOx CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.7277</td>
<td>0.2055</td>
<td>2.6959</td>
<td>4.34E-03</td>
<td>0.0363</td>
<td>3.85E-03</td>
<td>0.3366</td>
<td>0.0860</td>
<td>1.41E-03</td>
<td>0.0092</td>
<td>393.9522</td>
<td>393.9522</td>
<td>0.0037</td>
<td>393.9522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.7277</td>
<td>0.2055</td>
<td>2.6959</td>
<td>4.34E-03</td>
<td>0.0363</td>
<td>3.85E-03</td>
<td>0.3366</td>
<td>0.0860</td>
<td>1.41E-03</td>
<td>0.0092</td>
<td>393.9522</td>
<td>393.9522</td>
<td>0.0037</td>
<td>393.9522</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>SOx</th>
<th>CO</th>
<th>PM10</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>SOx CO2</th>
<th>NOx CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>8.7818</td>
<td>91.2056</td>
<td>43.1645</td>
<td>0.0706</td>
<td>4.1846</td>
<td>4.1846</td>
<td>0.0014</td>
<td>3.9314</td>
<td>0</td>
<td>7.866.51</td>
<td>7.866.51</td>
<td>2.196</td>
<td>7.866.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.7818</td>
<td>91.2056</td>
<td>43.1645</td>
<td>0.0706</td>
<td>4.1846</td>
<td>4.1846</td>
<td>0.0014</td>
<td>3.9314</td>
<td>0</td>
<td>7.866.51</td>
<td>7.866.51</td>
<td>2.196</td>
<td>7.866.51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taylor Yard Parcel G-2 Project
Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Metric</th>
<th>Lot/Acres</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined: Industrial</td>
<td>50.00</td>
<td>User Defined Utility</td>
<td>50.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- **Wind Speed (m/s):** 2.2
- **Precipitation Freq (Days):** 33
- **Operational Year:** 2014
- **Utility Company:** Los Angeles Department of Water & Power

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Zip Code 90065

- **Land Use:** 50 acre lot.
- **Construction Phase:** Data gaps: Investigation - 3 weeks; Removal of existing concrete - 2 weeks; Excavation - 8 weeks; Backfill/grading - 5 weeks; Well installation - 2 weeks; Installation of piping and SVE, bioventing, sub-slab venting, and vapor barrier systems - 20 weeks.
- **Off-road Equipment - Data Gaps Investigation:** 1 Geoprobe Push Rig.
- **Off-road Equipment - Removal of Existing Concrete:** 1 Excavator, 1 Front End Loader.
- **Off-road Equipment - Excavation:** 1 Excavator, 1 Dump Truck, 1 Front End Loader.
- **Off-road Equipment - Backfill/Grading:** 1 Compactor, 1 Dozer, 1 Grader.
- **Off-road Equipment - Well Installation:** 2 Drill Rigs.
- **Off-road Equipment - Installation of piping and SVE, bioventing, sub-slab venting, and vapor barrier systems:** 2 Excavators, 2 Dump Trucks, 1 Off-road Water Truck, 2 Compactors, 2 Graders, 2 HDPE Pipe Welder, 2 Membrane Spray Machines.
- **Grading:** 25,400 cu. yd exported contaminated soil, 25,400 cu. yd imported clean fill.
Trips and VMT - Data: Gaps investigation: 4 workers, 1 mobile lab; Removal of Existing Concrete: 4 workers, 200 haul trips, water truck; Excavation: 6 workers, water truck; Backfill/grading: 6 workers, water truck, 1,588 haul trips; Wall Installation: 5 workers; Venting System Installation: 15 workers.
Vehicle Trips - Calculated outside of CalEEMod.
Energy Use - 5226 kWh/year used by blower.
Water And Wastewater - No water use.
Solid Waste - No solid waste generation.
Construction Off-road Equipment Mitigation - Watering is required by SCAQMD Rule 403 and is not mitigation.
Landscape Equipment - No landscaping.

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

<table>
<thead>
<tr>
<th>Unmitigated Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Ex. C2</td>
</tr>
<tr>
<td>2014</td>
<td>10,414</td>
</tr>
</tbody>
</table>

Total | 10,414 | 81,7094 | 82,1208 | 6.1448 | 16.449 | 4.1925 | 16.5946 | 4.8534 | 2,083 | 2,0494 | 0 | 11,848.22 | 11,848.22 | 2,2223 | 6 | 11,888.93 |

3.0 Construction Detail

<table>
<thead>
<tr>
<th>Construction Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Name</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Site Preparation</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
</tr>
<tr>
<td>Site Preparation</td>
</tr>
<tr>
<td>Excavation</td>
</tr>
<tr>
<td>Site Preparation</td>
</tr>
</tbody>
</table>
Offroad Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of Existing Concrete</td>
<td>Excavators</td>
<td>1</td>
<td>8</td>
<td>152</td>
<td>0.38</td>
</tr>
<tr>
<td>Excavation</td>
<td>Off-Highway Trucks</td>
<td>1</td>
<td>8</td>
<td>400</td>
<td>0.38</td>
</tr>
<tr>
<td>Excavation</td>
<td>Excavators</td>
<td>1</td>
<td>8</td>
<td>162</td>
<td>0.38</td>
</tr>
<tr>
<td>Well Installation</td>
<td>Bore/Diff Rigs</td>
<td>2</td>
<td>8</td>
<td>205</td>
<td>0.77</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Off-Highway Trucks</td>
<td>3</td>
<td>8</td>
<td>400</td>
<td>0.38</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Pile Compactors</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>0.43</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Welders</td>
<td>2</td>
<td>8</td>
<td>48</td>
<td>0.45</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Air Compressors</td>
<td>2</td>
<td>8</td>
<td>78</td>
<td>0.46</td>
</tr>
<tr>
<td>Excavation</td>
<td>Tractors/Loaders/Backhoes</td>
<td>1</td>
<td>8</td>
<td>87</td>
<td>0.37</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>Tractors/Loaders/Backhoes</td>
<td>1</td>
<td>8</td>
<td>87</td>
<td>0.37</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Excavators</td>
<td>2</td>
<td>8</td>
<td>207</td>
<td>0.38</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>Graders</td>
<td>1</td>
<td>8</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>Graders</td>
<td>2</td>
<td>8</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>Rubber Tired Dozers</td>
<td>1</td>
<td>8</td>
<td>255</td>
<td>0.4</td>
</tr>
<tr>
<td>Data Gaps Investigation</td>
<td>Bore/Diff Rigs</td>
<td>1</td>
<td>8</td>
<td>205</td>
<td>0.35</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>Rollers</td>
<td>1</td>
<td>8</td>
<td>30</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Worker Trip Count</th>
<th>Worker Trip Number</th>
<th>Vendor Trip Number</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Gaps Investigation</td>
<td></td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>34.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td></td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>460</td>
<td>16.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td></td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>14.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td></td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>3370.00</td>
<td>14.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
<tr>
<td>Well Installation</td>
<td></td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
<tr>
<td>Venting System Installation</td>
<td></td>
<td>13</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>8.9</td>
<td>20_LD_Mix</td>
<td>HOT_Mix</td>
<td>M1HDT</td>
<td></td>
</tr>
</tbody>
</table>
3.1 Mitigation Measures Construction

Water Exposed Area
Clean Paved Roads

3.2 Data Gaps Investigation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>TSP Total</th>
<th>Bio-C02</th>
<th>Bio-C02</th>
<th>Total-C02</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0247</td>
<td>0.0222</td>
<td>0.0291</td>
<td>0.0128</td>
<td>4.59E-03</td>
<td>0.0109</td>
<td>3.56E-03</td>
<td>4.24E-03</td>
<td>7.58E-03</td>
</tr>
<tr>
<td>Worker</td>
<td>0.2342</td>
<td>0.0811</td>
<td>0.0904</td>
<td>1.10E-03</td>
<td>0.0064</td>
<td>0.0237</td>
<td>9.70E-04</td>
<td>0.0066</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2590</td>
<td>0.1033</td>
<td>0.1206</td>
<td>1.54E-03</td>
<td>0.1072</td>
<td>0.0273</td>
<td>4.91E-03</td>
<td>0.0222</td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>TSP Total</th>
<th>Bio-C02</th>
<th>Bio-C02</th>
<th>Total-C02</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0165</td>
<td>0.0165</td>
<td>0.1178</td>
<td>0.1743</td>
<td>0.1743</td>
<td>0.3486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.3025</td>
<td>0.3025</td>
<td>2.1212</td>
<td>8.76E-03</td>
<td>0.1693</td>
<td>0.1693</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.3289</td>
<td>0.3289</td>
<td>2.2393</td>
<td>8.93E-03</td>
<td>0.1693</td>
<td>0.1693</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.3 Removal of Existing Concrete - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Net-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>NOx</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2.507</td>
<td>14.924</td>
<td>10.300</td>
<td>0.200</td>
<td>0.696</td>
<td>0.270</td>
<td>0.567</td>
<td>0.245</td>
<td>0.454</td>
<td>3.935</td>
<td>3.078</td>
<td>0.628</td>
<td>3.273</td>
<td>0.943</td>
<td>0.190</td>
<td>0.246</td>
</tr>
</tbody>
</table>

Vendor
- 0.5447
- 0.2322
- 0.3913
- 4.40E-04
- 0.0728
- 7.69E-03
- 0.189
- 1.38E-03
- 7.08E-03
- 14.82
- 14.64
- 4.29E-04
- 44.05

Worker
- 0.2342
- 0.0817
- 0.0984
- 1.10E-03
- 0.8974
- 9.86E-04
- 0.9354
- 0.0237
- 0.0246
- 98.96
- 98.96
- 3.32E-03
- 99.10

Total
- 2.507
- 14.924
- 10.300
- 0.200
- 0.699
- 0.272
- 0.567
- 0.245
- 0.454
- 3.935
- 3.078
- 0.628
- 3.273
- 0.943
- 0.190
- 0.246

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Net-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>NOx</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.7312</td>
<td>8.861</td>
<td>5.8421</td>
<td>8.406E-03</td>
<td>0.0256</td>
<td>0.3256</td>
<td>0.4835</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0256</td>
<td>0.4835</td>
<td>0</td>
<td>0</td>
<td>997.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.7312</td>
<td>8.861</td>
<td>5.8421</td>
<td>8.406E-03</td>
<td>0</td>
<td>0.3256</td>
<td>0.4835</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4835</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>997.00</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Excavation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-C02</th>
<th>NBio-C02</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0447</td>
<td>0.0222</td>
<td>0.2013</td>
<td>4.48E-04</td>
<td>0.0135</td>
<td>4.39E-03</td>
<td>0.0169</td>
<td>3.59E-03</td>
<td>4.00E-03</td>
<td>7.58E-03</td>
<td>44.6525</td>
<td>44.6525</td>
<td>4.28324</td>
<td></td>
<td></td>
<td>44.6525</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0013</td>
<td>0.0019</td>
<td>0.0091</td>
<td>1.04E-03</td>
<td>0.0041</td>
<td>0.0480</td>
<td>0.0150</td>
<td>0.0050</td>
<td>0.0360</td>
<td>14.5625</td>
<td>14.5625</td>
<td>0.48556</td>
<td>14.6509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.056</td>
<td>0.033</td>
<td>1.2683</td>
<td>2.08E-03</td>
<td>0.1486</td>
<td>0.33E-03</td>
<td>0.1574</td>
<td>0.0691</td>
<td>5.58E-03</td>
<td>0.0445</td>
<td>133.1842</td>
<td>133.1842</td>
<td>9.88E-03</td>
<td>183.1412</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-C02</th>
<th>NBio-C02</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.04E-05</td>
<td>0.0</td>
<td>4.04E-05</td>
<td>0.0</td>
<td>4.04E-05</td>
<td>0.0</td>
<td>4.04E-05</td>
<td>0.0</td>
<td>4.04E-05</td>
<td>0.0</td>
<td>4.04E-05</td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>1.845</td>
<td>21.331</td>
<td>11.4962</td>
<td>0.0216</td>
<td>1.0694</td>
<td>1.5064</td>
<td>0.0259</td>
<td>0.0259</td>
<td>0.28765</td>
<td>2.28765</td>
<td>0.8759</td>
<td>2.301244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.845</td>
<td>21.331</td>
<td>11.4962</td>
<td>0.0216</td>
<td>1.0894</td>
<td>1.5344</td>
<td>0.0259</td>
<td>0.0259</td>
<td>0.30765</td>
<td>2.28765</td>
<td>0.8759</td>
<td>2.301244</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Backfill/Grading - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>PM10</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>LEC-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>7.3075</td>
<td>4.7133</td>
<td>4.4037</td>
<td>0.035</td>
<td>2.2118</td>
<td>0.8901</td>
<td>3.0719</td>
<td>0.5095</td>
<td>0.7312</td>
<td>7.3066</td>
<td>9.760.25</td>
<td>9.760.25</td>
<td>0.6975</td>
<td>9.762.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0447</td>
<td>0.2222</td>
<td>0.2913</td>
<td>4.4025</td>
<td>0.0195</td>
<td>1.286.03</td>
<td>0.0269</td>
<td>3.5516</td>
<td>0.0415</td>
<td>7.356.03</td>
<td>4.426.02</td>
<td>4.426.02</td>
<td>1.264.94</td>
<td>44.0411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.3613</td>
<td>0.9916</td>
<td>0.0681</td>
<td>1.5945</td>
<td>0.1341</td>
<td>1.445.03</td>
<td>0.0588</td>
<td>0.9556</td>
<td>1.3416</td>
<td>0.0396</td>
<td>345.4518</td>
<td>144.4518</td>
<td>9.495.93</td>
<td>148.8566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.7168</td>
<td>47.2061</td>
<td>33.3587</td>
<td>0.0973</td>
<td>2.3542</td>
<td>0.686</td>
<td>3.2242</td>
<td>0.6446</td>
<td>0.7863</td>
<td>1.4471</td>
<td>9.964.46</td>
<td>9.964.46</td>
<td>0.6974</td>
<td>9.966.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>BU9</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>LEC-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>6.1954</td>
<td>0</td>
<td>0</td>
<td>6.1954</td>
<td>2.9237</td>
<td>0</td>
<td>2.9237</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>2.708</td>
<td>28.0454</td>
<td>18.8669</td>
<td>0.0177</td>
<td>1.5441</td>
<td>1.5441</td>
<td>1.4806</td>
<td>1.4806</td>
<td>0</td>
<td>1.884.43</td>
<td>1.884.43</td>
<td>0.3569</td>
<td>1.890.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.708</td>
<td>28.0454</td>
<td>18.8669</td>
<td>0.0177</td>
<td>1.5441</td>
<td>1.5441</td>
<td>1.4806</td>
<td>1.4806</td>
<td>0</td>
<td>1.884.43</td>
<td>1.884.43</td>
<td>0.3569</td>
<td>1.890.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6 Well Installation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhast PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhast PM2.5</th>
<th>PM2.5 Total</th>
<th>Hex-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
<tr>
<td>Worker</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
<tr>
<td>Total</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhast PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhast PM2.5</th>
<th>PM2.5 Total</th>
<th>Hex-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
<tr>
<td>OffRoad</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
<tr>
<td>Total</td>
<td>0.785</td>
<td>12.72</td>
<td>3.02</td>
<td>0.52</td>
<td>0.11</td>
<td>0.63</td>
<td>0.54</td>
<td>0.34</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.88</td>
<td>0.88</td>
<td>1.88</td>
</tr>
</tbody>
</table>
3.7 Venting System Installation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Micro-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>0.0</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0732</td>
<td>0.229</td>
<td>2.3972</td>
<td>0.1190</td>
<td>0.9335</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>87.1258</td>
<td>87.1258</td>
<td>87.1258</td>
<td>3.0297</td>
<td>371.6273</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0732</td>
<td>0.229</td>
<td>2.3972</td>
<td>0.1190</td>
<td>0.9335</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>3.5999</td>
<td>87.1258</td>
<td>87.1258</td>
<td>87.1258</td>
<td>3.0297</td>
<td>371.6273</td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Micro-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>8.2218</td>
<td>81.4656</td>
<td>43.1845</td>
<td>0.0765</td>
<td>4.1848</td>
<td>4.1848</td>
<td>3.9314</td>
<td>3.9314</td>
<td>0.0</td>
<td>7,998.81</td>
<td>7,998.81</td>
<td>7,998.81</td>
<td>2,1936</td>
<td>7,221.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.2218</td>
<td>81.4656</td>
<td>43.1845</td>
<td>0.0765</td>
<td>4.1848</td>
<td>4.1848</td>
<td>3.9314</td>
<td>3.9314</td>
<td>0.0</td>
<td>7,998.81</td>
<td>7,998.81</td>
<td>7,998.81</td>
<td>2,1936</td>
<td>7,914.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acres</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Industrial</td>
<td>50.00</td>
<td>User Defined Unit</td>
<td>50.00</td>
<td>0.00</td>
<td>9</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- Urbanization: Urban
- Wind Speed (m/s): 2.2
- Precipitation Freq (Days): 33
- Climate Zone: 11
- Operational Year: 2014
- Utility Company: Los Angeles Department of Water & Power
- CO2 Intensity (lb/MWh): 1274.69
- CH4 Intensity (lb/MWh): 0.629
- N2O Intensity (lb/MWh): 0.008

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Zip Code: 90065
Land Use - 50 acre:lot

Construction Phase - Data gaps: Investigation - 3 weeks; Removal of existing concrete - 2 weeks; Excavation - 8 weeks; Backfill/Grading - 5 weeks; Well Installation - 2 weeks; Installation of piping and SVE, bioventing, sub slab venting, and vapor barrier systems - 20 weeks

Off-road Equipment - Data Gaps Investigation: 1 Geoprobe Push Rigs
Off-road Equipment - Removal of Existing Concrete: 1 Excavator, 1 Front End Loader
Off-road Equipment - Excavation: 1 Excavator, 1 Dump Truck, 1 Front End Loader
Off-road Equipment - Backfill/Grading: 1 Compactor, 1 Dozer, 1 Grader
Off-road Equipment - Well Installation: 2 Drill Rigs
Off-road Equipment - Installation of piping and SVE, bioventing, sub slab venting, and vapor barrier systems: 2 Excavators, 2 Dump Trucks, 1 Off-road Water Truck, 2 Compactors, 2 Graders, 2 HDPE Pipe Welders, 2 Membrane Drainage Systems
Grading - 25,400 cy exported contaminated soil, 25,400 cy imported clean fill
Trips and VMT - Data Gaps Investigation: 4 workers, 1 mobile lab; Removal of Existing Concrete: 4 workers, 200 haul trips, water truck; Excavation: 6 workers, water truck; Backfill/Grading: 6 workers, water truck, 1,588 haul trips; Well Installation: 5 workers; Venting System Installation: 15 workers.

Vehicle Trips - Calculated outside of CalEEMod.

Energy Use - 5226 kWh/year used by blower.

Water And Wastewater - No water use.

Solid Waste - No solid waste generation.

Construction Off-road Equipment Mitigation - Watering is required by SCAQMD Rule 403 and is not mitigation.

Landscape Equipment - No landscaping.

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Fugitive PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Fugitive PM2.5 Total</th>
<th>NOx-NOx2</th>
<th>NOx-NOx2 Total</th>
<th>CO2</th>
<th>O2</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.014</td>
<td>4.718</td>
<td>3.326</td>
<td>2.039</td>
<td>0.001</td>
<td>0.496</td>
<td>0.250</td>
<td>0.314</td>
<td>0</td>
<td>0.329</td>
<td>0</td>
<td>0.214</td>
<td>0.674</td>
</tr>
<tr>
<td>Total</td>
<td>0.014</td>
<td>4.718</td>
<td>3.326</td>
<td>2.039</td>
<td>0.001</td>
<td>0.496</td>
<td>0.250</td>
<td>0.314</td>
<td>0</td>
<td>0.329</td>
<td>0</td>
<td>0.214</td>
<td>0.674</td>
</tr>
</tbody>
</table>

3.0 Construction Detail

Construction Phase

<table>
<thead>
<tr>
<th>Phase</th>
<th>Phase Name</th>
<th>Phase Type</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days</th>
<th>Num Days Week</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Gaps Investigation</td>
<td>Site Preparation</td>
<td>3/27/2014</td>
<td>4/16/2014</td>
<td>5</td>
<td>15</td>
<td>Site Preparation to investigate site.</td>
</tr>
<tr>
<td>5</td>
<td>Well Installation</td>
<td>Site Preparation</td>
<td>7/31/2014</td>
<td>8/13/2014</td>
<td>5</td>
<td>10</td>
<td>Installation of groundwater extraction well.</td>
</tr>
</tbody>
</table>
Off Road Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Off Road Equipment Types</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of Existing Concrete</td>
<td>Excavators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td>Off-Highway Trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td>Excavators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Installation</td>
<td>Bore/Drill Rigs</td>
<td>2</td>
<td>8</td>
<td>203</td>
<td>0.34</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Off-Highway Trucks</td>
<td>3</td>
<td>8</td>
<td>400</td>
<td>0.38</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Plate Compactor</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>0.48</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Water Tenders</td>
<td>2</td>
<td>6</td>
<td>48</td>
<td>0.45</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Air Compressors</td>
<td>2</td>
<td>8</td>
<td>78</td>
<td>0.46</td>
</tr>
<tr>
<td>Excavation</td>
<td>Tractors/Loaders/Backhoes</td>
<td>1</td>
<td>8</td>
<td>97</td>
<td>0.37</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>Excavators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Graders</td>
<td>1</td>
<td>8</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td>Graders</td>
<td>2</td>
<td>6</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>Rubber Tired Dozers</td>
<td>1</td>
<td>8</td>
<td>225</td>
<td>0.6</td>
</tr>
<tr>
<td>Data/Geos Investigation</td>
<td>Bore/Drill Rigs</td>
<td>1</td>
<td>8</td>
<td>205</td>
<td>0.5</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>Rollers</td>
<td>1</td>
<td>8</td>
<td>63</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Off Road Equipment Count</th>
<th>Worktrip Count</th>
<th>Vendor Trip Count</th>
<th>Hauling Trip Count</th>
<th>Worktrip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data/Geos Investigation</td>
<td></td>
</tr>
<tr>
<td>Removal of Existing</td>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>400</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
<tr>
<td>Excavation</td>
<td></td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td></td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>3,176.00</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
<tr>
<td>Well Installation</td>
<td></td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
<tr>
<td>Venting/System Installation</td>
<td></td>
<td>13</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>14.7</td>
<td>6.9</td>
<td>20</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
</tr>
</tbody>
</table>
3.1 Mitigation Measures Construction

Water Exposed Area
Clean Paved Roads

3.2 Data Gaps Investigation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Bio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2.656E-03</td>
<td>4.3E-03</td>
<td>7.69E-03</td>
<td>1.06E-03</td>
<td>7.50E-04</td>
<td>4.06E-05</td>
<td>4.06E-05</td>
<td>2.40E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vender</td>
<td>1.892E-03</td>
<td>4.7E-03</td>
<td>4.89E-03</td>
<td>1.00E-03</td>
<td>9.88E-04</td>
<td>4.60E-04</td>
<td>4.60E-04</td>
<td>2.70E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>6.650E-04</td>
<td>3.5E-04</td>
<td>7.64E-04</td>
<td>1.06E-03</td>
<td>8.00E-04</td>
<td>1.00E-02</td>
<td>1.00E-02</td>
<td>6.00E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier</td>
<td>6.322E-04</td>
<td>2.4E-04</td>
<td>7.64E-04</td>
<td>1.06E-03</td>
<td>8.00E-04</td>
<td>1.00E-02</td>
<td>1.00E-02</td>
<td>6.00E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Bio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2.84E-03</td>
<td>6.0E-03</td>
<td>7.80E-03</td>
<td>0.81E-03</td>
<td>1.4E-03</td>
<td>1.4E-03</td>
<td>1.4E-03</td>
<td>1.31E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 6.33E-03
Unmitigated Construction - Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>3.011</td>
<td>0.078</td>
<td>0.0424</td>
<td>1.56E-04</td>
<td>3.43E-03</td>
<td>1.35E-03</td>
<td>4.87E-03</td>
<td>2.48E-03</td>
<td>2.18E-03</td>
<td>0</td>
<td>1.35E-04</td>
<td>1.35E-04</td>
<td>1.26E-04</td>
<td>0</td>
<td>1.5E-02</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>2.10E-04</td>
<td>1.28E-02</td>
<td>1.41E-03</td>
<td>0</td>
<td>6.00E-05</td>
<td>2.00E-05</td>
<td>4.00E-05</td>
<td>2.00E-05</td>
<td>4.00E-05</td>
<td>0</td>
<td>6.00E-05</td>
<td>6.00E-05</td>
<td>0</td>
<td>0</td>
<td>0.29E-06</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>1.02E-02</td>
<td>0.10E-04</td>
<td>0.26E-04</td>
<td>0.10E-04</td>
<td>4.85E-04</td>
<td>1.30E-04</td>
<td>0</td>
<td>1.30E-04</td>
<td>0</td>
<td>0</td>
<td>0.10E-04</td>
<td>0.10E-04</td>
<td>0</td>
<td>0</td>
<td>3.49E-07</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.0122</td>
<td>0.0772</td>
<td>0.058</td>
<td>1.60E-04</td>
<td>3.28E-03</td>
<td>1.37E-03</td>
<td>5.29E-03</td>
<td>1.83E-03</td>
<td>1.29E-03</td>
<td>2.34E-03</td>
<td>0</td>
<td>1.48E-01</td>
<td>1.48E-01</td>
<td>1.59E-04</td>
<td>0</td>
<td>1.6E-02</td>
</tr>
</tbody>
</table>

Mitigated Construction - On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Exhaust</td>
<td>0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>3.96E-03</td>
<td>0.0423</td>
<td>0.0352</td>
<td>1.50E-05</td>
<td>2.93E-03</td>
<td>2.93E-03</td>
<td>2.42E-03</td>
<td>2.42E-03</td>
<td>0</td>
<td>0</td>
<td>4.15E-01</td>
<td>4.15E-01</td>
<td>1.59E-03</td>
<td>0</td>
<td>4.6E-05</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.96E-03</td>
<td>0.0423</td>
<td>0.0352</td>
<td>1.50E-05</td>
<td>2.93E-03</td>
<td>2.93E-03</td>
<td>2.42E-03</td>
<td>2.42E-03</td>
<td>0</td>
<td>0</td>
<td>4.15E-01</td>
<td>4.15E-01</td>
<td>1.59E-03</td>
<td>0</td>
<td>4.6E-05</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Excavation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0</td>
</tr>
<tr>
<td>Vendor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.22E-05</td>
<td>0.22E-05</td>
<td>0</td>
</tr>
<tr>
<td>Worker</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.50E-04</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.79E-03</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Front End</td>
<td>0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0169</td>
<td>0.4225</td>
<td>0.2279</td>
<td>4.30E-04</td>
<td>0.0201</td>
<td>0.0251</td>
<td>0.0159</td>
<td>0.0159</td>
<td>0</td>
<td>41.4842</td>
<td>41.4842</td>
<td>0.0123</td>
<td>41.7417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0169</td>
<td>0.4225</td>
<td>0.2279</td>
<td>4.30E-04</td>
<td>0.0201</td>
<td>0.0251</td>
<td>0.0159</td>
<td>0.0159</td>
<td>0</td>
<td>41.4842</td>
<td>41.4842</td>
<td>0.0123</td>
<td>41.7417</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Backfill/Grading - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Bio-CO2 + Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g/yr</td>
<td>kg/yr</td>
<td>kg/yr</td>
<td>g/yr</td>
<td>kg/yr</td>
<td>kg/yr</td>
<td>g/yr</td>
<td>g/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0961</td>
<td>0.0539</td>
<td>0.4104</td>
<td>1.32E-03</td>
<td>0.0922</td>
<td>0.0107</td>
<td>0.0478</td>
<td>7.92E-03</td>
<td>0.057E+02</td>
<td>0.0173</td>
<td>0</td>
<td>1.10E+02</td>
<td>11.0E+02</td>
<td>11.0E+02</td>
</tr>
<tr>
<td>Vendor</td>
<td>3.57E-03</td>
<td>7.06E-03</td>
<td>3.32E-03</td>
<td>1.06E-03</td>
<td>1.06E-03</td>
<td>1.06E-03</td>
<td>1.06E-03</td>
<td>1.06E-03</td>
<td>1.06E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Worker</td>
<td>3.84E-03</td>
<td>1.17E-03</td>
<td>9.01E-03</td>
<td>2.05E-03</td>
<td>2.05E-03</td>
<td>2.05E-03</td>
<td>2.05E-03</td>
<td>2.05E-03</td>
<td>2.05E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.0976</td>
<td>0.0597</td>
<td>0.4481</td>
<td>1.27E-03</td>
<td>0.0929</td>
<td>0.0108</td>
<td>0.0488</td>
<td>7.94E-03</td>
<td>0.057E+02</td>
<td>0.0179</td>
<td>0</td>
<td>1.13E+02</td>
<td>11.0E+02</td>
<td>11.0E+02</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>Bio-CO2 + Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g/yr</td>
<td>kg/yr</td>
<td>kg/yr</td>
<td>g/yr</td>
<td>kg/yr</td>
<td>kg/yr</td>
<td>g/yr</td>
<td>g/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Dust</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>6.00E-01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.226</td>
<td>2.23E-04</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.226</td>
<td>2.23E-04</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.6 Well Installation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>BiCO2</th>
<th>NH3-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>1.23E+03</td>
<td>3.93E-04</td>
<td>4.07E-03</td>
<td>1.06E-03</td>
<td>6.60E-04</td>
<td>1.00E-04</td>
<td>5.50E-04</td>
<td>1.00E-04</td>
<td>1.00E-05</td>
<td>1.30E-05</td>
<td>0</td>
<td>0.5791</td>
<td>8.9701</td>
<td>4.08E-06</td>
<td>0</td>
<td>0.3700</td>
</tr>
<tr>
<td>Total</td>
<td>1.23E+03</td>
<td>3.93E-04</td>
<td>4.07E-03</td>
<td>1.06E-03</td>
<td>5.60E-04</td>
<td>1.00E-04</td>
<td>5.50E-04</td>
<td>1.00E-04</td>
<td>1.00E-05</td>
<td>1.50E-05</td>
<td>0</td>
<td>0.5791</td>
<td>8.9701</td>
<td>4.08E-06</td>
<td>0</td>
<td>0.3700</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>BiCO2</th>
<th>NH3-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.02E+03</td>
<td>0.06E-06</td>
<td>0.02E-02</td>
<td>0.03E+03</td>
<td>0.09E+03</td>
<td>1.00E-03</td>
<td>7.74E-03</td>
<td>1.74E-03</td>
<td>0</td>
<td>0.9995</td>
<td>6.9923</td>
<td>2.49E-03</td>
<td>0</td>
<td>6.4444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.02E+03</td>
<td>0.06E-06</td>
<td>0.02E-02</td>
<td>0.03E+03</td>
<td>0.09E+03</td>
<td>1.00E-03</td>
<td>7.74E-03</td>
<td>1.74E-03</td>
<td>0</td>
<td>0.9995</td>
<td>6.9923</td>
<td>2.49E-03</td>
<td>0</td>
<td>6.4444</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.7 Venting System Installation - 2014

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>COx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>NOx-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0</td>
</tr>
<tr>
<td>Vacuum</td>
<td>0</td>
</tr>
<tr>
<td>Worker</td>
<td>0.004</td>
<td>0.012</td>
<td>0.022</td>
<td>2.196</td>
<td>0.041</td>
<td>0.086</td>
<td>0.916</td>
<td>1.606</td>
<td>0.638</td>
<td>0.016</td>
<td>1.468</td>
<td>0.631</td>
<td>0.016</td>
<td>1.468</td>
</tr>
<tr>
<td>Total</td>
<td>0.004</td>
<td>0.012</td>
<td>0.022</td>
<td>2.196</td>
<td>0.041</td>
<td>0.086</td>
<td>0.916</td>
<td>1.606</td>
<td>0.638</td>
<td>0.016</td>
<td>1.468</td>
<td>0.631</td>
<td>0.016</td>
<td>1.468</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>NOx</th>
<th>COx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>NOx-CO2</th>
<th>N2O-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.436</td>
<td>4.362</td>
<td>2.158</td>
<td>3.392</td>
<td>0.026</td>
<td>0.032</td>
<td>0.006</td>
<td>0.006</td>
<td>0.356</td>
<td>0.012</td>
<td>0.368</td>
<td>0.012</td>
<td>0.007</td>
<td>0.375</td>
</tr>
<tr>
<td>Total</td>
<td>0.436</td>
<td>4.362</td>
<td>2.158</td>
<td>3.392</td>
<td>0.026</td>
<td>0.032</td>
<td>0.006</td>
<td>0.006</td>
<td>0.356</td>
<td>0.012</td>
<td>0.368</td>
<td>0.012</td>
<td>0.007</td>
<td>0.375</td>
</tr>
</tbody>
</table>
Taylor Yard Parcel G-2 Project
Initial Study
Rail Emissions

Estimated Rail Emissions (tons)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Fuel (gal)</th>
<th>CO</th>
<th>NOx</th>
<th>HC</th>
<th>PM</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loaded trip</td>
<td>44,367</td>
<td>1.5</td>
<td>7.0</td>
<td>0.6</td>
<td>0.0</td>
<td>492.5</td>
</tr>
<tr>
<td>Unloaded trip</td>
<td>12,298</td>
<td>0.4</td>
<td>4.0</td>
<td>0.1</td>
<td>0.1</td>
<td>197.6</td>
</tr>
<tr>
<td>Total</td>
<td>56,665</td>
<td>1.7</td>
<td>11.0</td>
<td>0.7</td>
<td>0.1</td>
<td>689.6</td>
</tr>
</tbody>
</table>

Assumptions
- Total rail distance: 836 miles to landfill in East Carbon, UT
- Total loaded weight: 48,323 lbs
- Total unloaded weight: 15,107 tons

Information provided by Union Pacific Railroad Company, 6/1973.

Project Data

- Length of rail in SCAB: 70 miles
- Fuel usage: 884.2 ton-miles/gallon
- Total rail exported: 25,430 cubic yard
- Gondola size: 100 cubic yard
- Number of gondolas needed: 254 gondolas
- Number of gondolas per trip: 10 gondolas
- Number of trips: 25 roundtrips
- Loaded weight per trip: 1,847 tons/trip

SO2 Emission Factor

- Source: EPA, 2009
- 9200 g/gal
- 98% percent sulfur converted to SO2
- 300: spin sulfur content fuel
- 64: g/mil SO2
- 32: g/mil S
- 1.88, g/gal
- 0.000005 lb/ton-mile

US Default Emission Factors for Transport/Locomotives Diesel

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisssion Factor (gram/gallon)</td>
<td>0.80</td>
<td>0.26</td>
</tr>
<tr>
<td>Emisssion Factor (gram/ton-mile)</td>
<td>8.00</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Criteria Pollutants - Maximum Daily Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>TOG</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions (pounds/day)</td>
<td>8.9</td>
<td>46.4</td>
<td>2.4</td>
<td>2.4</td>
<td>0.6</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Criteria pollutant emissions are calculated for emissions within South Coast Air Basin. Assumes 1-way trip through the air basin to make 1/2 a day.

Criteria Pollutants - Annual Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>TOG</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions (tons/year)</td>
<td>4.7</td>
<td>9.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Criteria pollutant emissions are calculated for emissions within South Coast Air Basin. All rail emissions are assumed to occur in 2013.

Greenhouse Gas

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions (metric tons/year)</td>
<td>572</td>
<td>0.05</td>
<td>0.01</td>
<td>→</td>
</tr>
<tr>
<td>Global Warming Potential</td>
<td>1</td>
<td>22</td>
<td>310</td>
<td>→</td>
</tr>
<tr>
<td>Emissions (MTCO2e/year)</td>
<td>572</td>
<td>1</td>
<td>6</td>
<td>577</td>
</tr>
</tbody>
</table>

Global warming potential source: IPCC, 1996.

MTCO2e = million tons carbon dioxide equivalent.

Greenhouse gas emissions are calculated for the entire distance to the landfill. All rail emissions are assumed to occur in 2013.

Conversion Factors

- 453.6 grams/pound
- 2,000 pounds
- 1,000,000 grams/metric ton

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOG/HC</td>
<td>1.055</td>
</tr>
<tr>
<td>TOG/HG</td>
<td>1.07</td>
</tr>
<tr>
<td>PM2.5/PM10</td>
<td>0.97</td>
</tr>
</tbody>
</table>
References:
- Email communication with D. D. Nguyen CDN Smith 12/17/12.
Taylor Yard Parcel G-2 Project

Initial Study

Operational Emissions - Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Fuel Type</th>
<th>CO</th>
<th>NOx</th>
<th>RGG</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup Truck</td>
<td>Gasoline</td>
<td>3.542</td>
<td>0.282</td>
<td>0.113</td>
<td>0.004</td>
<td>0.565</td>
<td>0.023</td>
<td>374.912</td>
<td>0.335</td>
<td>0.014</td>
</tr>
<tr>
<td>Vacuum Truck</td>
<td>Diesel</td>
<td>0.896</td>
<td>7.416</td>
<td>0.186</td>
<td>0.011</td>
<td>0.805</td>
<td>0.178</td>
<td>1156.463</td>
<td>0.009</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Emission factors for South Coast Air Basin from EMFAC2011. Emission factors used for Simulation include heavy vehicle used for vacuum truck. PM emission factors for pickup trucks, lorry, tractor, and cars are used for trucks and heavy vehicles. Based on the EMFAC2011 FAQ, N2O for pickup trucks was calculated by multiplying the NOx emission factor by 0.1%. Based on the EMFAC2011 FAQ, CH4 for a vacuum truck was calculated by multiplying the TOC emission factor by 0.940f and N2O for a vacuum truck was assumed to be 0.3310 g/gal fuel. Based on the Climate Registry General Reporting Protocol (2010), the fuel economy for the vacuum truck was assumed to be 30 mpg.

Daily Emissions

<table>
<thead>
<tr>
<th>O&M Activity</th>
<th>Vehicle Type</th>
<th>Trips/day</th>
<th>VMT/day</th>
<th>CO</th>
<th>NOx</th>
<th>RGG</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Daily Emissions (pounds/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VES & Bioventing</td>
<td>Pickup Truck</td>
<td>1</td>
<td>100</td>
<td>0.78</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vacuum Truck</td>
<td>2</td>
<td>200</td>
<td>0.31</td>
<td>3.27</td>
<td>0.08</td>
<td>0.00</td>
<td>0.36</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Subslab venting</td>
<td>Pickup Truck</td>
<td>2</td>
<td>200</td>
<td>1.86</td>
<td>0.16</td>
<td>0.05</td>
<td>0.00</td>
<td>0.26</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>GW monitoring</td>
<td>Pickup Truck</td>
<td>2</td>
<td>200</td>
<td>1.86</td>
<td>0.45</td>
<td>0.05</td>
<td>0.00</td>
<td>0.26</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>7</td>
<td>700</td>
<td>4.19</td>
<td>3.65</td>
<td>0.21</td>
<td>0.01</td>
<td>1.00</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

For a conservative analysis, it was assumed that all vehicle trips would happen in one day. Actual site visits may not occur concurrently.

Annual Emissions

<table>
<thead>
<tr>
<th>O&M Activity</th>
<th>Vehicle Type</th>
<th>Trips/day</th>
<th>VMT/day</th>
<th>CO</th>
<th>NOx</th>
<th>RGG</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Annual Emissions (ton/year)</th>
<th>(metric ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VES & Bioventing</td>
<td>Pickup Truck</td>
<td>58</td>
<td>5,860</td>
<td>0.0225</td>
<td>0.0025</td>
<td>0.0007</td>
<td>0.0000</td>
<td>0.0037</td>
<td>0.0001</td>
<td>2.17</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Vacuum Truck</td>
<td>8</td>
<td>800</td>
<td>0.0006</td>
<td>0.0006</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.89</td>
<td>0.00</td>
</tr>
<tr>
<td>Subslab venting</td>
<td>Pickup Truck</td>
<td>16</td>
<td>1,600</td>
<td>0.0062</td>
<td>0.0066</td>
<td>0.0022</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>GW monitoring</td>
<td>Pickup Truck</td>
<td>32</td>
<td>3,200</td>
<td>0.0124</td>
<td>0.0012</td>
<td>0.0004</td>
<td>0.0000</td>
<td>0.0021</td>
<td>0.0001</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>114</td>
<td>11,400</td>
<td>0.0417</td>
<td>0.0105</td>
<td>0.0016</td>
<td>0.0001</td>
<td>0.0075</td>
<td>0.0004</td>
<td>4.67</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Global Warming Potential from PICS Second Assessment Report (1985). MTCO2e/year = metric tons carbon dioxide equivalent per year

Distance

50 miles each way

Conversions

- 453.6 g/lb
- 2,000 lb/ton
- 1,000,000 g/metric ton
Taylor Yard Parcel G-2 Project
Initial Study
Operational Emissions - Vapor Extraction System

VOC Concentrations Entering Air Pollution Control System

<table>
<thead>
<tr>
<th>Compound</th>
<th>Bromomethane</th>
<th>Chloroethane</th>
<th>1,1-Dichloroethene</th>
<th>1,2-Dichloroethene</th>
<th>Methylene Chloride</th>
<th>Tetrachloroethene</th>
<th>1,1,1-Trichloroethene</th>
<th>Trichloroethene</th>
<th>Vinyl Chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppmv</td>
<td>0.06</td>
<td>0.28</td>
<td>0.52</td>
<td>2.66</td>
<td>0.25</td>
<td>0.28</td>
<td>0.03</td>
<td>14.44</td>
<td>3.21</td>
</tr>
<tr>
<td>g/m3</td>
<td>0.006</td>
<td>0.04</td>
<td>0.035</td>
<td>0.014</td>
<td>0.001</td>
<td>0.001</td>
<td>0.349</td>
<td>0.079</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Sources: Table 3, Ann. 3 Chromatograph Resin and Non-SVE Emissions Data

VOC/Emissions

Total Influent	0.5 atm/l total VOC
Efficiency	95% removal
Flow Rate	1,689 m³/hr
Operation	24 hours/day
Outlet	0.02 lb/hr VOC
	0.44 lb/day VOC

Conversions

- 60 min/hr
- 35.31 cfm³
- 483.6 g/gal
- 24.45 L/min
- 1,000 L/m³
Taylor Yard Parcel G-2 Project
Initial Study
Operational Emissions - Blower GHG

Blower Data

<table>
<thead>
<tr>
<th>Blower Size</th>
<th>40 hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>25,828 W</td>
</tr>
<tr>
<td>Operation</td>
<td>24 hours/day</td>
</tr>
<tr>
<td>Energy Usage</td>
<td>716 kWh/day</td>
</tr>
<tr>
<td></td>
<td>261,283 kWh/year</td>
</tr>
</tbody>
</table>

Greenhouse Gas Emissions

<table>
<thead>
<tr>
<th>Emission Factor (lb/MWh)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1227.89</td>
<td>0.029</td>
<td>0.00017</td>
</tr>
<tr>
<td>Emissions (metric tons/year)</td>
<td>145.5</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>Global Warming Potential</td>
<td>1</td>
<td>21</td>
<td>319</td>
</tr>
<tr>
<td>Emissions (MTCO2e/year)</td>
<td>145.5</td>
<td>0.072</td>
<td>0.227</td>
</tr>
<tr>
<td>Total Emissions (MTCO2e/year)</td>
<td>145.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CalEEMod 2015-2 default emission factors for Los Angeles Department of Water & Power.
MTCO2e/year = metric tons carbon dioxide equivalent per year*

Conversions

- 1,000,000 g/metric ton
- 1,000 W/kW
- 1,000 kWh/MWh
This page left intentionally blank
APPENDIX B

SUMMARY OF TAYLOR YARD BIOLOGICAL INVESTIGATION

State of California — California Environmental Protection Agency
Department of Toxic Substances Control

DTSC 1324 (07/26/2010)
Fauna and flora observed or indicated were identified during the site visits. A list of species identified at the interior of the rail yard, in the adjacent Los Angeles River, or in the buffer zone at the edge of the rail yard is presented below in Table 1. This list includes all species observed (either directly or via sign or cell) and does not represent all plant and animal species likely to be found on-site. Site visits were conducted during two different seasons, late fall and mid-summer, to identify flora and fauna inhabiting the site throughout the year. The timing of the visits did not coincide with the peak season for migrating birds, and therefore, may underestimate transient usage of the site. In addition, flowering plants blooming during the spring rainy season and becoming dormant later in summer are also likely to be underrepresented; however, the habitat generally consisted of ruderal vegetation and these native plants are unlikely to exist at the site. During the fall, vegetation was dormant in many cases, but was still identifiable and was confirmed during the mid-summer visit. Other information including state and federal databases and reports were consulted to identify species potentially present at the site but not identified during the site visits.

Various city and state parks exist in the area surrounding the Site, although, with the exception of the Rio de Los Angeles State Park, all parks are separated from the rail yard by housing, industrial facilities, interstate, and local surface streets. The northern and eastern parcel of the former Taylor Yard Complex, is the Rio de Los Angeles State Park to attract wildlife and for recreational use. The Rio de Los Angeles State Park is intended to act as a wildlife corridor for the adjacent Los Angeles River, which is also considered a sensitive ecological area. A biological characterization and report was prepared in accordance with the DTSC's Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, based on site visits conducted on 10 November 2005 and 7 July 2006. Following is a summary of the result of the biological characterization:

Sensitive Species

Sensitive species of fauna and flora were specifically identified for special consideration during assessment activities. Sensitive species include those listed as threatened or endangered by the United States Fish and Wildlife Service. Wildlife and vegetation listed as species of special concern, sensitive species, or protected species by the State of California were also considered sensitive species. The County of Los Angeles has 138 listed plant species considered rare and endangered by the federal and state governments and the California Native Plant Society. None of these species were identified during the site visits as existing or likely to exist at the Site. In addition, no sensitive bird species were identified during the site visit and are not likely to exist at the site due to the lack of quality habitat within the Site and the surrounding area. In addition, there are several sensitive bird species known to exist along the lower portion of the Los Angeles River, but they are not likely to use the Site for foraging, nesting, or as a movement corridor due to the isolation of the area from native open space and the poor habitat quality.
Vegetation
Vegetation throughout the major portion of the Site is sparse, widely scattered, and primarily composed of coastal sage scrub species and non-native, ruderal vegetation. Riparian marsh and woodlands exists within the Los Angeles River stream channel adjacent to the Taylor Yard Complex. There are no vegetative associations currently present at the Site, and there is no indication of a disturbed riparian woodland or freshwater marsh within the boundary of the Site. The largest area of vegetative cover exists at the northern boundary of the complex near the north access gate. This area of less than one acre is primarily composed of Mexican fan palm (Washingtonia robusta), California goldenbush (Ericameria aridoides), and Rabbit’s foot grass (Polypogon monspeliensis).

Coastal sage scrub species were identified at the Site, primarily in the buffer zone area adjacent to the Los Angeles River. A ten-foot band of vegetation, herein referred to as the buffer zone, exists between the eastern edge of the concrete-lining of the Los Angeles River and a maintenance road, which is part of the Site. The buffer vegetation is comprised primarily of coastal sage scrub species and non-native exotic species.

Wildlife
Sightings of wildlife species were noted at the Taylor Yard Complex during the site visits. A pair of American kestrels (Falco sparverius) were observed perching on a utility pole about 50 feet north of the northern gate on the adjacent Parcel G-1. Several other avian species, including Brewer’s blackbird (Euphagus cyanocephalus), American crow (Corvus brachyrhynchos), osprey (Pandion haliaetus), black phoebe (Sayornis nigricans), and mourning dove (Zenaida macroura) were observed at the rail yard, perched on utility poles and power lines. Stills, coots, teals, mallards, and double-crested cormorants (Phalacrocorax auritus) were observed in the portion of the Los Angeles River adjacent to the Site during the site visits, but they were not present at the Site. The limited distribution of food sources and cover at the Site indicates that habitat resources are low and bird species are not likely to select the Site for breeding or foraging. Open spaces with more attractive habitat to bird species are available less than one mile in all directions, and the 600-acre Elysian Park is located approximately 0.3 mile to the south of Taylor Yard Complex.

Reptiles or amphibians were not observed at the site, and no signs (e.g. tracks, burrows) indicated their presence. Several invertebrate species were observed during the July site visit to the Taylor Yard Complex; however, no invertebrates were observed during the November site visit. Terrestrial invertebrates including arthropods and annelids are potentially present at the Site, although none were identified during the site visit.

One mammal was observed at the Site, the California ground squirrel (Spermophilus beecheyi), but two coyotes (Canis latrans) were observed crossing upstream of the Site. Species previously identified at the adjacent Parcel D include Botta’s pocket gopher (Thomomys bottae), striped skunk (Mephitis mephitis), coyote, black rat (Rattus rattus), and house mouse (Mus musculus). Although previous investigations conducted indicated the presence of mammals at Parcel D, the area has been completely stripped and graded; therefore, there is little likelihood that these species exist at the property today. These species are included as potential ecological receptors at the Site.
Table 1
Species of fauna and flora identified during the 11 November 2005 and 7 July 2006 site visit.

<table>
<thead>
<tr>
<th>Family</th>
<th>Latin Name</th>
<th>Common Name</th>
<th>Location</th>
<th>Observed November 2005</th>
<th>Observed July 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fauna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accipitrdae</td>
<td>Pandion haliaetus</td>
<td>Osprey</td>
<td>Buffer Zone</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Anatidae</td>
<td>Anas americana</td>
<td>American widgeon</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ardeidae</td>
<td>Anas platyrhynchos</td>
<td>Mallard</td>
<td>Los Angeles River</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anatidae</td>
<td>Ardea herodias</td>
<td>Great blue heron</td>
<td>Los Angeles River</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canidae</td>
<td>Canis latrans</td>
<td>Coyote</td>
<td>Los Angeles River</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Columbidae</td>
<td>Zenaida macroura</td>
<td>Mourning dove</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Corvidae</td>
<td>Corvus brachyrhynchos</td>
<td>American crow</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Falconidae</td>
<td>Falco sparverius</td>
<td>American kestrel</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Icteridae</td>
<td>Euphagus cyanoccephalus</td>
<td>Brewer's blackbird</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hirundinidae</td>
<td>Stelgidopteryx ruficollis</td>
<td>Northern rough-winged swallow</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laridae</td>
<td>Larus californicus</td>
<td>California gull</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Phalacrocoracidae</td>
<td>Phalacrocorax auritus</td>
<td>Double-crested cormorant</td>
<td>Los Angeles River</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pleiidae</td>
<td>Plebejus ardens</td>
<td>Cabbage white butterfly</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rallidae</td>
<td>Fulica americana</td>
<td>American coot</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Recurvirostridae</td>
<td>Himantopus mexicanus</td>
<td>Black-necked stilt</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Spermophilus beechey</td>
<td>California ground squirrel</td>
<td>Buffer Zone</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Latin Name</td>
<td>Common Name</td>
<td>Location</td>
<td>Observed November 2005</td>
<td>Observed July 2006</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Tyramlinidae</td>
<td>Sisyros nigrocené</td>
<td>Black phoebe</td>
<td>Buffer Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Amaranthus albus</td>
<td>White tumbleweed</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Malosma pumila</td>
<td>Laurel sumac</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Areaceae</td>
<td>Washingtonia robusta</td>
<td>Mexican fan palm</td>
<td>Railyard/ Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Artemisia californica</td>
<td>California sagebrush</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Artemisia dracunculus</td>
<td>Wild terragon</td>
<td>Railyard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Baccharis pilulata</td>
<td>Coyote brush</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Buccharis salicifolia</td>
<td>Mulefat</td>
<td>Railyard/ Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Conyza canadensis</td>
<td>Horseweed</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Cynara cardunculus</td>
<td>Artichoke thistle</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Encelia californica</td>
<td>Bush sunflower</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Ericameria artemisia</td>
<td>Mock heather</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Heterotheca grandiflora</td>
<td>Telegraph weed</td>
<td>Railyard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Sidalcea californica</td>
<td>California goldenrod</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Stephanotola virginata</td>
<td>Wand chicory</td>
<td>Railyard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Xanthium strumarum</td>
<td>Cocklebur</td>
<td>Los Angeles River</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td>Sambucus mexicana</td>
<td>Blue elderberry</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chrysopodiaceae</td>
<td>Salix traite</td>
<td>Russian thistle</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Family</td>
<td>Latin Name</td>
<td>Common Name</td>
<td>Location</td>
<td>Observed November 2005</td>
<td>Observed July 2006</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Ricinus communis</td>
<td>Castor bean</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Lotus esculenta</td>
<td>Deerweed</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia apiana</td>
<td>White sage</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Salvia melitiera</td>
<td>Black sage</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>Ludwigia hexapetala</td>
<td>Water primrose</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Platanaceae</td>
<td>Platanus racemosa</td>
<td>California sycamore</td>
<td>Los Angeles River</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Poaceae</td>
<td>Arundo donax</td>
<td>Giant reed</td>
<td>Los Angeles River</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Cortaderia selloana</td>
<td>Pampas grass</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Mullienbergia rigens</td>
<td>Dee Grass</td>
<td>Railyard/Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Pennisetum setaceum</td>
<td>African fountain grass</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Poaceae</td>
<td>Polypogon monspeliensis</td>
<td>Rabbitfoot polygong</td>
<td>Railyard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>Eriogonum fasciculatum</td>
<td>California buckwheat</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Salix gooddingii</td>
<td>Black Willow</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sinanotusaceae</td>
<td>Allanthus altissima</td>
<td>Tree of Heaven</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Cature wrightii</td>
<td>Jimson weed</td>
<td>Buffer Zone</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Nicotiana glutaca</td>
<td>Tobacco</td>
<td>Railyard/Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tamaricaceae</td>
<td>Tamarix sp.</td>
<td>Tamarisk</td>
<td>Buffer Zone</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Citrus sinensis</td>
<td>Orange</td>
<td>Railyard</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Others: receptors identified include: amphipods, algae, Carex sp., chironomids, cicada, dragonfly, damselfly, Lemmaeaceae sp., a possible Lepeolit fish species, minnows (presumably Cyprinid sp.), Polygonum sp., and Scytus sp.
APPENDIX C

NOISE AND VIBRATION CALCULATIONS
Taylor Yard Parcel G-2 Project
Initial Study
Construction Noise

<table>
<thead>
<tr>
<th>Phase</th>
<th>Equipment Description</th>
<th>Usage Factor</th>
<th>Equipment Lmax @ 50'</th>
<th>Equipment Leq @ 50'</th>
<th>Number of Equipment</th>
<th>Add to Single Source Level (dBA)</th>
<th>Total Lmax @ 50'</th>
<th>Total Leq @ 50'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Gaps Investigation</td>
<td>Geoprobe Push-Rig</td>
<td>20%</td>
<td>84</td>
<td>77</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>77</td>
</tr>
<tr>
<td>Removal of Existing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data Gaps Investigation Total</td>
<td>84</td>
<td>77</td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>Excavation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Excavator</td>
<td>40%</td>
<td>85</td>
<td>81</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Front End Loader</td>
<td>40%</td>
<td>80</td>
<td>76</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Water Truck</td>
<td>40%</td>
<td>84</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excavation Total</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Compactor</td>
<td>20%</td>
<td>80</td>
<td>73</td>
<td>1</td>
<td>0</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Dozer</td>
<td>40%</td>
<td>85</td>
<td>81</td>
<td>1</td>
<td>0</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Grader</td>
<td>40%</td>
<td>85</td>
<td>81</td>
<td>1</td>
<td>0</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Water Truck</td>
<td>40%</td>
<td>84</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Backfill/Grading Total</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well Installation Total</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>Well Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>Vehicular/System Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Air Compressor</td>
<td>40%</td>
<td>80</td>
<td>76</td>
<td>2</td>
<td>3</td>
<td>83</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Compressors</td>
<td>20%</td>
<td>80</td>
<td>73</td>
<td>2</td>
<td>3</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Air Compressor</td>
<td>40%</td>
<td>85</td>
<td>81</td>
<td>2</td>
<td>3</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Grader</td>
<td>40%</td>
<td>85</td>
<td>81</td>
<td>2</td>
<td>3</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Off-Highway Trucks</td>
<td>40%</td>
<td>84</td>
<td>80</td>
<td>3</td>
<td>5</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Welder</td>
<td>40%</td>
<td>73</td>
<td>69</td>
<td>2</td>
<td>3</td>
<td>76</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vehicular/System Installation Total</td>
<td>94</td>
<td>90</td>
</tr>
</tbody>
</table>

Assume all equipment operates at the same time during each phase.
Taylor Yard Parcel G-2 Project
Initial Study
Construction Noise

<table>
<thead>
<tr>
<th>Impacts to Residential Area on Verdan Street</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from the Center of the Construction Area (ft)</td>
<td>825</td>
</tr>
<tr>
<td>Maximum Construction Noise Level @ 50 ft (dBA)</td>
<td>90</td>
</tr>
<tr>
<td>Distance Divergence (dBA)</td>
<td>24.3</td>
</tr>
<tr>
<td>Atmospheric Attenuation (dBA)</td>
<td>0.7</td>
</tr>
<tr>
<td>Construction Noise Level at the Receptor (dBA)</td>
<td>65</td>
</tr>
</tbody>
</table>

Distance to sensitive receptor estimated using Google Earth.

Atmospheric attenuation for 600 Hz for ambient pressure of 101.3 kPa, average temperature of 69°F, and average relative humidity of 50% used.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Background w/ CNEL penalty (dBA)</th>
<th>Construction (dBA)</th>
<th>Total (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>1:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>2:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>3:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>4:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>5:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>6:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>7:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>8:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>9:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>10:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>11:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>12:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>13:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>14:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>15:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>16:00</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>17:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>18:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>19:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>20:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>21:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>22:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>23:00</td>
<td>60</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>

Increase in CNEL: 3
Taylor Yard Parcel G-2 Project
Initial Study
Construction Noise

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Auto</th>
<th>Medium Truck</th>
<th>Heavy Truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Gaps Investigation</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>4</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Excavation</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>6</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>Well Installation</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Equivalent Vehicles

<table>
<thead>
<tr>
<th></th>
<th>65 mph</th>
<th>35 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>30.9</td>
</tr>
</tbody>
</table>

Total Equivalent Vehicles per Hour

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>65 mph</th>
<th>35 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Gaps Investigation</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Removal of Existing Concrete</td>
<td>428</td>
<td>1,263</td>
</tr>
<tr>
<td>Excavation</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Backfill/Grading</td>
<td>1,424</td>
<td>4,212</td>
</tr>
<tr>
<td>Well Installation</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Venting System Installation</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Assumes all construction employees, mobile lab truck, water truck, and haul trucks will be traveling during the same hour.

Major traffic noise source (closest to the residential area) is I-5.
I-5 Annual Daily Traffic 285,000
