3.18 Utilities and Service Systems

This section addresses the potential impacts to utilities and service systems associated with implementation of the proposed Project. This section includes: a description of the existing utilities and service systems in the proposed Project area; a summary of applicable regulations related to utilities and service systems; and an evaluation of the potential impacts of the proposed Project related to utilities and service systems. Project design features include PDF-UTIL-1: Drought-Tolerant Landscaping, PDF-UTIL-2: Water-Efficient Irrigation, and PDF-UTIL-3: Decentralized Drainage Strategy. Impacts to utilities and service systems are less than significant with incorporation of mitigation measure UTIL-1: Underground Utilities Search and Coordination.

3.18.1 Environmental Setting

Water Supply

Several water agencies participate in delivering water to retail customers and households in Los Angeles County. The California Department of Water Resources (DWR) operates and maintains the State Water Project that imports water from the Sacramento River Delta to Southern California. The Metropolitan Water District (Metropolitan) buys imported State Water Project water, imports water from the Colorado River through the Colorado River Aqueduct (CRA), and wholesales water to its member agencies. Water wholesalers provide water to retail customers; some are agencies of cities or counties, some are private companies, and some are special districts. The proposed Project is located within Los Angeles Department of Water and Power’s (LADWP’s) service area, which provides potable water and electricity to over four million residents and businesses in the city of Los Angeles and surrounding communities. LADWP is the largest municipal water and power utility in the United States.

In May 2021, LADWP adopted its 2020 Urban Water Management Plan (UWMP) (LADWP 2021). The UWMP has been used to inform existing water supply settings in this section. Primary sources of water for the LADWP service area include the Los Angeles Aqueducts (LAA), local groundwater, recycled water, and imported supplemental water purchased from Metropolitan. Water from the LAA and Metropolitan is classified as imported because it is obtained from outside LADWP’s service area (LADWP 2021). Local groundwater is locally obtained within the service area. Recycled water, another local supply source, is becoming a larger part of LADWP’s overall supply portfolio. The average total water supply in LADWP’s service area between the 2015-2016 fiscal year and the 2019-2020 fiscal year was approximately 497,386 acre-feet per year (AFY) (LADWP 2021). Many of LADWP’s traditional water supply sources are becoming increasingly constrained due to hydrologic variability, environmental regulations, and groundwater basin contamination. LADWP is actively pursuing increased sustainability by investing in conservation, water use efficiency, water recycling, stormwater capture, and local groundwater development and remediation, while also protecting its imported water supplies.

Total water demand in the LADWP service area varies from year to year and is influenced by a number of factors such as population growth, weather, water conservation, water use efficiency, dry periods, and economic activity. From the period between 2016 and 2020, average total water
3. Environmental Setting, Impact Analysis, and Mitigation Measures

3.18 Utilities and Service Systems

use per year was 495,685 AF, which is below the 30-year average of 588,611 AF for the years 1991 through 2020 (LADWP 2021, p. 2-3). LADWP expects to have a reliable supply of up to 746,000 AF, inclusive of planned conservation, in 2045 under a multiple dry years scenario. Also, under drought conditions, LADWP will have a reliable supply of 655,700 AF of water in 2025 (LADWP 2021). Based on water demand projections through the year 2045, existing and planned water supplies and purchases in the LADWP service area together with water conservation efforts and Metropolitan water purchases, will meet future water demands in its service area.

Los Angeles Aqueduct

Since the early 1900s, the LAA historically provided the vast majority of water for the City. From the 2015-2016 fiscal year to the 2019-2020 fiscal year, the LAA accounted for 48 percent of the total water supply. LAA deliveries are dependent on snowfall in the Eastern Sierra Nevada. Years with abundant snowpack result in larger water deliveries from the LAA, and reduced purchases of supplemental water from Metropolitan. However, between 1992 and 2020, the City reallocated approximately one-half of the LAA water supply (approximately 177,000 AFY) to other uses to supply a variety of environmental projects within the Owens Valley and Mono Basin in the Eastern Sierra (LADWP 2021, p. ES-4).

Los Angeles Aqueduct Filtration Plant

The Los Angeles Aqueduct Filtration Plant (LAAFP) is located in the northern portion of the San Fernando Valley. The LAAFP treats unfiltered water from the LAA for turbidity and untreated State Water Project water for bromate formation (LADWP 2021, p. 9-9). The plant was completed in 1986 and has a treatment capacity of up to 600 million gallons per day (MGD) of water (U.S. Department of Energy [USDOE] 2022).

Local Groundwater

LADWP relies on local groundwater as a major component of its local water supply portfolio. From the 2015-2016 fiscal year to the 2019-2020 fiscal year, local groundwater has provided approximately 8 percent of the total water supply in Los Angeles, and since 1970 has provided up to 23 percent of total supply during extended dry periods when imported supplies became less reliable.

The Upper Los Angeles River Area (ULARA) watershed, which includes the San Fernando Basin and Sylmar Basin, is the principal groundwater resource where LADWP recharges and extracts local groundwater. LADWP also owns and extracts its local groundwater rights from the Central Basin and is entitled to produce water from the neighboring West Coast Basin. The un adjudicated Hollywood, Santa Monica, and northern Central Basins are local groundwater sources that do not currently provide groundwater to LADWP, but there is potential to develop future drinking water supplies for LADWP from these basins. In total, LADWP’s groundwater rights can potentially supply more than 110,000 AFY of groundwater. While LADWP’s groundwater rights are a critical component of local supply, the groundwater basins also provide LADWP with opportunities for water storage to meet its future supply reliability strategy. The San Fernando Basin has an available storage capacity of 500,000 AF, and the West Coast and Central Basins have a combined available storage capacity of 500,000 AF (LADWP 2021).
The primary source of groundwater for the City is the San Fernando Basin (Basin 4-12), which has provided as much as 89 percent of the City’s groundwater supply from 2015 to 2020, ranging from 22,259 AFY to 75,958 AFY. LADWP has 10 major wellfields within Basin 4-12, with 41 operable wells with the capacity to pump 184,611 AFY as of December 2020 (LADWP 2021).

Currently, the reservoirs at the SLRC are supplied with treated Basin 4-12 groundwater from Pollock Well #3 (Refer to Section 3.10, Hydrology and Water Quality). The Pollock Wellfield is located approximately 0.5-mile northeast of the Project site and provides approximately 6 cubic feet per second (cfs) of capacity (LADWP 2021, p. 5-7). It should be noted that capacity figures are often higher than what is actually produced or intended normal operations, and thus, the 6 cfs of capacity (43,700 AFY) is not indicative of the historic production figure at Pollock Wellfield. The Silver Lake Reservoir Complex Master Plan Water Quality Model (Water Quality Model) prepared for the Project estimates that the annual average volume of Basin 4-12 groundwater pumped into the SLRC is approximately 241 AFY (CWE 2020).

Recycled Water

LADWP serves approximately 179 sites in the City with recycled water for irrigation, industrial, and environmental beneficial uses. From the 2015-2016 fiscal year to the 2019-2020 fiscal year, 2 percent of the total water supply was recycled water. Recycled water produced for the 2019-2020 fiscal year amounted to approximately 36,392 AFY, including municipal and industrial, and environmental reuse (LADWP 2021). All recycled water used within the City undergoes, at minimum, tertiary treatment and disinfection and meets or exceeds local and state requirements designed to ensure public safety (See Wastewater Treatment below for more information).

Metropolitan Supply

As a wholesaler, Metropolitan sells supplemental water to its 26 member agencies. LADWP is exclusively a retailer and has historically purchased supplemental imported supplies from Metropolitan to meet city demands. From the 2015-2016 fiscal year to the 2019-2020 fiscal year, purchases of supplemental water from Metropolitan amounted to an average of 42 percent of LADWP’s water supply portfolio. Metropolitan owns and operates five water treatment plants that are located throughout Metropolitan’s six-county service area (LADWP 2021, p. 9-1). The Silver Lake neighborhood is located in the service area of both the Joseph Jensen Treatment Plant and the F.E. Weymouth Treatment Plant. The facilities treat water that is delivered from the State Water Project and the Colorado River.

Joseph Jensen Treatment Plant

The Joseph Jensen Treatment Plant is located in Granada Hills and distributes water to San Fernando Valley, Ventura County, West Los Angeles, Santa Monica and the Palos Verdes Peninsula. It is Metropolitan's largest treatment plant and the largest west of the Mississippi River, with a capacity of 750 MGD. The 125-acre Jensen plant only treats water from the State Water Project, which comes from the California Aqueduct (Metropolitan 2022). The aqueduct carries water from Northern California that flows through the Sacramento-San Joaquin Delta. The facility was among the first of Metropolitan's treatment plants to convert to ozone treatment, with the project finished in 2005.
F.E. Weymouth Treatment Plant

The F.E. Weymouth Treatment Plant is located in the City of La Verne and was the first treatment plant built by Metropolitan, completed in the year 1940. It largely serves Los Angeles and Orange Counties. The plant was part of the district’s Colorado River Aqueduct construction project. Today, it treats water from the Colorado River and the State Water Project, which imports supplies from Northern California. Weymouth has a treatment capacity of 520 MGD (Metropolitan 2022). Weymouth is also the location of Metropolitan's state-of-the-art water quality lab, where more than 250,000 water quality tests are conducted each year. The laboratory's primary purpose is to safeguard the drinking water served to nearly 19 million Southern California residents.

Wastewater

City of Los Angeles Bureau of Sanitation

LASAN provides wastewater treatment to the City, as well as several unincorporated areas adjacent to the city of Los Angeles. LASAN operates and maintains its own wastewater collection and treatment systems with over 6,700 miles of sewers that serve more than four million residential and business customers in Los Angeles and 29 contracting cities and agencies (LASAN 2022a). These sewers are connected to the city of Los Angeles’s four wastewater and water reclamation plants, discussed below, that process an average of 580 MGD of wastewater each day of the year (LASAN 2022b).

Hyperion Water Reclamation Plant

The Hyperion Water Reclamation Plant (HWRP) is the city’s oldest and largest wastewater treatment facility and has been operating since 1894. An average of 275 MGD of wastewater enters the HWRP on a dry-weather day. Since the amount of wastewater entering HWRP can double on rainy days, the plant was designed to accommodate both dry- and wet-weather days with a maximum flow of 450 MGD and peak wet-weather flow of 800 MGD. The plant has been expanded and improved numerous times over the last 100 years. Today, leading-edge technological innovations capitalize upon the opportunity to recover wastewater bio-resources that are used for energy generation and agricultural applications. In addition, air emission controls and odor management facilities are integrated in all improvements. The wastewater treatment process at the HWRP includes preliminary treatment (i.e. removing solids from sewage via screening and use aerated grit chambers), primary treatment, and secondary treatment. Solids removed during primary and secondary treatment are pumped for further processing in digester tanks (LASAN 2022c).

Los Angeles-Glendale Water Reclamation Plant

In 1976 the Los Angeles-Glendale Water Reclamation Plan (LAGWRP) started operations as the first water reclamation plant in the city. The plant processes approximately 20 MGD of wastewater. The plant’s highly treated wastewater meets and exceeds the water quality standards for recycled water for irrigation and industrial processes, and conserves over one billion gallons of potable water per year. LASAN and the City of Glendale co-own the plant, and LASAN operates and maintains it. Each City pays 50 percent of the costs and receives an equal share of the recycled water. The facility is strategically located to serve east San Fernando Valley.
communities that are both within and outside of the City of Los Angeles limits. By processing flows in the eastern San Fernando Valley, the plant is able to provide critical hydraulic relief to the City’s major sewers downstream. The LAGWRP is highly automated and staff can control processes from the on-site control room or at remote locations (LASAN 2022d).

Stormwater

The Los Angeles County Department of Public Works, Flood Control District (LACFCD) encompasses more than 2,700 square miles and approximately 2.1 million land parcels within 6 major watersheds. It includes drainage infrastructure within 86 incorporated cities as well as the unincorporated county areas. LACFCD operates the vast majority of drainage infrastructure near the Project site. This includes 14 major dams and reservoirs, 483 miles of open channel, 27 spreading grounds, 3,330 miles of underground storm drains, 47 pumping plants, 172 debris basins, 27 sediment placement sites, 3 seawater intrusion barriers and an estimated 82,000 catch basins (LACFCD 2022).

The SLRC is equipped with overflow discharge facilities and could discharge into the LACFCD storm drain network under maximum precipitation storm conditions. However, the SLRC is largely isolated from the surrounding drainage system due to factors such as its local topography, limited surface water supplies, and existing seepage and evaporation in the reservoirs. Existing surface water flow conditions are discussed further Section 3.10, *Hydrology and Water Quality*.

Solid Waste Management

LASAN is responsible for the collection and removal of all solid materials and waste in the City, and would provide services to the proposed Project. LASAN collects an average of 6,652 tons per day (TPD) of refuse, recyclables, yard trimmings, and other bulky items from more than 750,000 homes. LASAN owns and operates the Central LA Recycling and Transfer Station (CLARTS), which was designed to accommodate a capacity of 4,025 TPD and temporarily stores refuse and transports it to the nearest landfill or recycling facility. LASAN has closed all of its landfills and now uses the privately owned Sunshine Canyon landfill for refuse disposal (LASAN 2022e).

Sunshine Canyon Landfill, located in the northwest region of the City, handles approximately one-third of the daily waste of all of Los Angeles County and receives roughly 9,000 TPD of waste, or more than 2.5 million tons annually, and has a max permitted throughput capacity of 12,100 TPD. The facility has a remaining capacity of 77,900,000 tons, and would not cease operations until 2037 (Republic Services 2022; CalRecycle 2022a).

LACSD serves the solid waste management needs of a large portion of Los Angeles County with several landfills, recycle centers, materials recovery/transfer facilities, and energy recovery facilities. LASAN disposes waste at several County landfills. The nearest solid waste facilities operated by LACSD that would be available to service the proposed Project are described below.

Scholl Canyon Landfill

The Scholl Canyon Landfill (SCLF) located in the City of Glendale is operated by LACSD. The facility is a solid waste facility that accepts materials such as construction and demolition waste, industrial waste, and mixed municipal waste. The facility accepts an average of 1,300 TPD and
has a max permitted throughput capacity of 3,400 TPD. Further, the SCLF has a remaining capacity of 9,900,000 tons and is expected to operate until the year 2030 (CalRecycle 2022b).

Southeast Resource Recovery Facility (SERRF)

The SERRF is a Refuse-To-Energy facility in Long Beach owned by a joint powers authority (JPA) between LACSD and the City of Long Beach, and is operated by a private company under contract. Southeast Resource Recovery Facility (SERRF) processes an average of 1,290 tons of municipal solid waste each day and generates up to 36 MW of electricity. The electricity is used to operate the facility with the remainder sold to SCE. In addition, SERRF performs "front-end" and "back-end" recycling by recovering white goods prior to incineration and collecting metals removed from the boilers after incineration. Each month, an average 825 tons of metal are recycled rather than sent to a landfill (LACSD 2022a).

Downey Area Recycling and Transfer Facility

The Downey Area Recycling and Transfer Facility (DART) is a materials recovery and transfer facility that accepts different types of non-hazardous waste and recyclables from residential waste, commercial waste, industrial waste, construction and demolition waste, and green waste (LACSD 2022b).

Electric Power

LADWP provides over 23 MWh of electricity for the 1.5 million customers in its service area, which covers a 465-square-mile area in the city of Los Angeles and much of the Owens Valley (LADWP 2015). LADWP is the third largest California electric utility in terms of consumption, behind Pacific Gas & Electric and SCE (LADWP 2015). The SLRC accesses electricity from LADWP.

Natural Gas

The Southern California Gas Company (SCG) provides natural gas services to Los Angeles County. California imports 90 percent of its natural gas. Most imports are delivered via interstate pipelines from the Southwest, Rocky Mountains, and Canada (USEIA 2021). In 2020, Los Angeles County used 2,936 million kWh of gas (CEC 2022c). The SLRC accesses natural gas from SCG.

Telecommunication

Most telecommunication services in the county and City of Los Angeles are delivered by private service providers.

3.18.2 Regulatory Framework

Federal

Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act (RCRA) (40 CFR, Part 258 Subtitle D) establishes minimum location standards for siting municipal solid waste landfills. In addition, because
California laws and regulations governing the approval of solid waste landfills meet the requirements of Subtitle D, the U.S. EPA has delegated the enforcement responsibility to the State of California.

State

California Code of Regulations (CCR)

California Building Code

The California Building Code (CBC), which is codified in Title 24 of the California Code of Regulations, Part 2, was promulgated to safeguard the public health, safety, and general welfare by establishing minimum standards related to structural strength, means of egress to facilities (entering and exiting), and general stability of buildings. The purpose of the CBC is to regulate and control the design, construction, quality of materials, use/occupancy, location, and maintenance of all buildings and structures within its jurisdiction. Title 24 is administered by the California Building Standards Commission, which, by law, is responsible for coordinating all building standards. The provisions of the CBC apply to the construction, alteration, movement, replacement, location, and demolition of every building or structure or any appurtenances connected or attached to such buildings or structures throughout California. The 2019 edition of the CBC is based on the 2018 International Building Code (IBC) published by the International Code Council, which replaced the Uniform Building Code (UBC). The code is updated triennially, and the 2019 edition of the CBC was published by the California Building Standards Commission on July 1, 2019, and took effect starting January 1, 2020.

Water Efficiency Standards for Non-Federally Regulated Appliances

Title 20, Sections 1605.3 (h) and 1505(i) of the CCR establishes applicable State efficiency standards (i.e., maximum flow rates) for plumbing fittings and fixtures, including fixtures such as showerheads, lavatory faucets, and water closets (toilets). Among the standards, the maximum flow rate for lavatory faucets manufactured after July 1, 2016 is 1.2 gallons per minute at 60 psi. The standard for toilets sold or offered for sale on or after January 1, 2016 is 1.28 gallons per flush.

California Green Building Standards (CALGreen)

Part 11 of Title 24, the title that regulates the design and construction of buildings, establishes the California Green Building Standards (CALGreen) Code. The purpose of the CALGreen Code is to improve public health, safety and general welfare by enhancing the design and construction of buildings through the use of building concepts having a reduced negative impact or a positive environmental impact and encouraging sustainable construction practices in the following categories: planning and design, energy efficiency, water efficiency and conservation, material conservation and resource efficiency, and environmental quality. The CALGreen Code includes both mandatory measures as well as voluntary measures. The mandatory measures establish minimum baselines that must be met in order for a building to be approved. The mandatory measures for water conservation provide limits for fixture flow rates, which are the same as those for the Title 20 efficiency standards listed above. The voluntary measures can be adopted by local jurisdictions for greater efficiency.
Plumbing Code

Title 24, Part 5 of the CCR establishes the California Plumbing Code. The California Plumbing Code sets forth efficiency standards (i.e., maximum flow rates) for all new federally-regulated plumbing fittings and fixtures, including showerheads and lavatory faucets. The 2019 California Plumbing Code, which is based on the 2018 Uniform Plumbing Code, has been published by the California Building Standards Commission and went into effect on January 1, 2019.

Executive Orders

In addition, the Project would be required to comply with the following Executive Orders issued to regulate water usage in the Project area:

- On July 8, 2021, Executive Order N-10-21 was issued, calling for voluntary cutbacks of water usage by 15 percent from 2020 usage levels. The Order lists commonsense measures Californians can undertake to achieve water usage reduction goals and identifies the SWRCB for tracking of monthly reporting on the State’s progress.
- On April 7, 2017, Executive Order B-40-17 was issued. Cities and water districts throughout the state are required to report their water use each month and ban wasteful practices, including hosing off sidewalks and running sprinklers when it rains.

Sustainable Groundwater Management Act of 2014

The State Legislature enacted landmark groundwater legislation known as the Sustainable Groundwater Management Act (SGMA), which took effect on January 1, 2015. With SGMA, the State focused upon equipping and empowering local agencies with tools needed to manage high- and medium-priority groundwater basins in a sustainable manner. Actions necessary to achieve sustainability vary by basin, but SGMA generally required local government and water agencies to form Groundwater Sustainability Agencies (GSAs) by January 30, 2017, and requires them to develop and implement Groundwater Sustainability Plans (GSPs), and monitor and report status of groundwater conditions of high- and medium-priority groundwater basins. GSPs and critically overdrafted high- and medium-priority basins were due to DWR by January 31, 2020, and GSPs for the remaining high- and medium-priority basins were due to DWR by January 31, 2022. The State seeks to mitigate and prevent the occurrence of adverse effects caused by unreasonable use of groundwater, such as groundwater storage depletion, land subsidence, seawater intrusion, water quality degradation, critical overdraft basin conditions, and surface water depletions (LADWP 2021, p. 5-21).

Throughout the development of SGMA there was broad public consensus that adjudicated basins are well managed, subject to Court jurisdiction, and should not be the primary focus for SGMA. The new law only requires managers of adjudicated basins to file a copy of their adjudications with DWR and provide annual reports that document basin conditions. Areas associated with adjudicated basins were eventually characterized as lower priority and exempt by DWR (LADWP 2021, p. 5-21). Groundwater is supplied to the proposed Project site from Basin 4-12, which is designated as a very low priority basin and has not been identified as a critically overdrafted basin by DWR. As such, the San Fernando Valley Basin does not have a specific groundwater management plan and is not subject to SGMA (DWR 2021).
California Urban Water Management Planning Act

Section 10610 of the California Water Code establishes the Urban Water Management Planning Act. The act states that every urban water service provider that serves 3,000 or more customers or that supplies over 3,000 acre-feet of water annually should prepare an Urban Water Management Plan (UWMP) every 5 years. The goal of a UWMP is to ensure the appropriate level of reliability in its water service sufficient to meet the needs of its various categories of customers during normal, dry, and multiple dry years. LADWP adopted its latest UWMP in May 2021 (LADWP 2021).

NPDES Construction General Permit

Construction associated with the proposed Project would disturb more than 1 acre of land surface for centralized and regional structural Best Management Practices (BMPs) (and possibly for those distributed structural BMPs larger than 1 acre), affecting the quality of stormwater discharges into waters of the United States. The proposed Program would therefore be subject to the National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities (Order 2009-0009-DWQ, NPDES No. CAS000002, Construction General Permit, as amended by Order 2010-0014-DWQ and Order 2012-0006-DWQ). The Construction General Permit regulates discharges of pollutants in stormwater associated with construction activity to waters of the United States from construction sites that disturb one or more acres of land surface, or that are part of a common plan of development or sale that disturbs more than 1 acre of land surface.

The Construction General Permit requires the development and implementation of a Stormwater Pollution Prevention Plan (SWPPP) that includes specific BMPs designed to prevent pollutants from contacting stormwater and keep all products of erosion from moving off-site into receiving waters. The SWPPP BMPs are intended to protect surface water quality by preventing the off-site migration of eroded soil and construction-related pollutants from the construction area. The CGP and SWPPPs are described in more detail in Section 3.10, Hydrology and Water Quality.

Senate Bills 610 and 221 (Chapters 643 and 642, Statutes of 2001)

Senate Bill (SB) 610 and Senate Bill 221 are companion measures that seek to promote more collaborative planning among local water suppliers and cities and counties. SB 610 requires that, for projects subject to CEQA that meet specific size criteria, the water supplier prepare water supply assessments (WSAs) that determine whether the water supplier has sufficient water resources to serve the projected water demands associated with the projects. A WSA must identify existing water entitlements, rights, and contracts and a quantification of the prior year’s water deliveries. In addition, the supply and demand analysis must address water supplies during single and multiple dry years presented in 5-year increments for a 20-year projection. If groundwater is the proposed supply source, the required assessments must include detailed analyses of historic, current, and projected groundwater pumping and an evaluation of the sufficiency of the groundwater basin to sustain a new project’s demands. However, WSAs are only required for large-scale development projects. The Project does not meet any of the criteria, and would not require a WSA.
SB 221 also addresses water supply in the land use approval process for large residential subdivision projects. However, unlike SB 610 WSAs, which are prepared at the beginning of a planning process, SB 221-required Water Supply Verification (WSV) is prepared at the end of the planning process for such projects. Under SB 221, a water supplier must prepare and adopt a WSV indicating sufficient water supply is available to serve a proposed subdivision, or the local agency must make a specific finding that sufficient water supplies are or will be available prior to completion of a project, as part of the conditions for the approval of a final subdivision map. In accordance, SB 221 specifically applies to residential subdivisions of 500 units or more. Since the proposed Project is not a residential subdivision, it is not subject to SB 221.

Construction and Demolition Waste Materials Diversion Requirements (Senate Bill 1374)

Signed in 2002, the Construction and Demolition Waste Materials Diversion Requirements (SB 1374) were codified in PRC Section 42919. SB 1374 requires that jurisdictions include in their annual AB 939 report a summary of the progress made in diverting construction and demolition waste. The legislation also required that CalRecycle adopt a model ordinance for diverting 50 to 75 percent of all construction and demolition waste from landfills. The model ordinance was adopted by CalRecycle on March 16, 2004.

California Integrated Waste Management Act of 1989 (Assembly Bill 939)

The California Integrated Waste Management Act of 1989 (Public Resources Code Division 30) enacted through Assembly Bill (AB) 939 emphasized conservation of natural resources through reduction, recycling, and reuse of solid waste. AB 939 requires that all cities and counties divert 25 percent of solid waste streams from landfills by 1995 and 50 percent by 2000. In accordance with AB 939, each local agency must submit an annual report to the California Integrated Waste Management Board summarizing its progress in diverting solid waste disposal.

Mandatory Commercial Recycling Regulation (Assembly Bill 341)

In October 2011, Governor Brown signed AB 341 into law, setting a 75 percent recycling goal for California by 2020. The purpose of this new law is to reduce greenhouse gas emissions by diverting commercial solid waste to recycling efforts and to expand the opportunity for additional recycling services and recycling manufacturing facilities in California. AB 341 went into effect July 1, 2012 and requires all commercial businesses and public entities that generate 4 cubic yards or more of waste per week to have a recycling program in place. The same requirement is also applied to multifamily dwellings of five units or more. The focus of AB 341 has been on dry recyclables such as cardboard, paper fiber, pallets, rigid plastics, and containers. Cardboard and paper fiber recycling offer the highest methane mitigation potential per ton recycled, and can also count towards the efforts of SB 1383 compliance.

Mandatory Commercial Organics Recycling Regulation (Assembly Bill 1826)

AB 1826 requires jurisdictions to implement an organic waste recycling program for businesses, including outreach, education, and monitoring of affected businesses. Additionally, each jurisdiction is to identify a multitude of information, including barriers to siting organic waste recycling facilities, as well as closed or abandoned sites that might be available for new organic
waste recycling facilities. AB 1826 defines “organic waste” as food waste, green waste, landscape and pruning waste, non-hazardous wood waste, and food-soiled paper waste that is mixed in with food waste. It also defines a “business” as a commercial or public entity, including, but not limited to, a firm, partnership, proprietorship, joint stock company, corporation, or association that is organized as a for-profit or nonprofit entity, or a multifamily residential dwelling consisting of five or more units. As of January 1, 2017, businesses that generate 4 cubic yards or more of organic waste per week are subject to this requirement. Commencing January 1, 2019, businesses that generate 4 cubic yards or more of commercial solid waste per week also were required to arrange for organic waste recycling services. In September 2020, CalRecycle reduced this threshold to 2 cubic yards of solid waste (i.e., total of trash, recycling, and organics) per week generated by covered businesses (CalRecycle 2022c).

Protection of Underground Infrastructure

The California Government Code Section 4216-4216.9 “Protection of Underground Infrastructure” requires an excavator to contact a regional notification center (e.g., Underground Services Alert or Dig Alert) at least 2 days prior to excavation of any subsurface installations. Any utility provider seeking to begin a project that could damage underground infrastructure can call Underground Service Alert, the regional notification center for Southern California. Underground Service Alert will notify the utilities that may have buried lines within 1,000 feet of the project. Representatives of the utilities are then notified and are required to mark the specific location of their facilities within the work area prior to the start of project activities in the area.

California Energy Action Plan II

The California Energy Action Plan II is the state’s principal energy planning and policy document (California Energy Commission 2005, updated 2008). The plan identifies state-wide energy goals, describes a coordinated implementation plan for state energy policies, and identifies specific action areas to ensure that California’s energy is adequate, affordable, technologically advanced, and environmentally sound. In accordance with this plan, the first priority actions to address California’s increasing energy demands are energy efficiency and demand response (i.e., reduction of customer energy usage during peak periods in order to address system reliability and support the best use of energy infrastructure). Additional priorities include the use of renewable sources of power and distributed generation (i.e., the use of relatively small power plants near or at centers of high demand). To the extent that these actions are unable to satisfy the increasing energy and capacity needs, clean and efficient fossil-fired generation is supported.

The State of California adopted standards to increase the percentage of electricity that retail sellers, including investor-owned utilities and community choice aggregators, must provide from renewable resources. The standards are referred to as the Renewables Portfolio Standards (RPS). The legislation requires utilities to increase the percentage of electricity obtained from renewable sources to 33 percent by 2020 and 50 percent by 2030. On September 10, 2018, Governor Jerry Brown signed SB 100, which further increased the California RPS and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024; 52 percent by December 31, 2027; and 60 percent by December 31, 2030.
County of Los Angeles General Plan

The proposed Project would be required to comply with all applicable county ordinances, and with General Plan goals, policies, and objectives related to water and wastewater treatment facilities infrastructure. City and unincorporated Los Angeles County General Plan regulations applicable to the proposed Project are described below.

Policy PS/F 3.1: Increase the supply of water though the development of new sources, such as recycled water, gray water, and rainwater harvesting.

Policy PS/F 3.2: Support the increased production, distribution and use of recycled water, gray water, and rainwater harvesting to provide for groundwater recharge, seawater intrusion barrier injection, irrigation, industrial processes and other beneficial uses.

County of Los Angeles Construction Green Building Standards Code

The County of Los Angeles Board of Supervisors adopted the Construction and Demolition (C&D) Debris Recycling and Reuse Ordinance on January 4, 2005, which was amended in January 2009. Effective January 2, 2011, Los Angeles County adopted the Green Building Standard Code, which increases the percentage at which non-residential construction projects must recycle material from 50 percent to 65 percent. The more stringent provisions of the Green Building Standard Code are currently enforced by Los Angeles County Department of Public Works. The purpose is to increase the diversion of construction and demolition debris from disposal facilities and will assist the County in meeting the State of California’s 50 percent waste reduction mandate. Any construction project that requires a demolition or grading permit must submit a Recycling and Reuse Plan.

Local

LADWP 2020 Urban Water Management Plan

In accordance with the California Urban Water Management Planning Act, Urban Water Management Plans (UWMPs) are updated at 5-year intervals. LADWP adopted the 2020 UWMP on May 25, 2021. The 2020 UWMP builds upon the goals and progress made in the 2015 UWMP and currently serves as the City’s master plan for reliable water supply and resource management consistent with the City’s goals and objectives. The UWMP details LADWP’s efforts to promote the efficient use and management of its water resources. LADWP’s UWMP used a service area-wide methodology in developing its water demand projections. This methodology does not rely on individual development demands to determine area-wide growth. Rather, the projected growth in water use for the entire service area was considered in developing long-term water projections for the City to the year 2045. Long range projections are based on Southern California Association of Government (SCAG) growth projections. The 2020 UWMP is based on projections in the 2020 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS).

One Water LA 2040 Plan

In April 2018, the City prepared the One Water LA 2040 Plan (One Water LA Plan), an integrated approach to Citywide recycled water supply, wastewater treatment, and stormwater...
management (City of Los Angeles 2018). The new plan builds upon the City's Water IRP, which projected needs and set forth improvements and upgrades to wastewater conveyance systems, recycled water systems, and runoff management programs through the year 2020, and extends its planning horizon to 2040. The One Water LA Plan proposes a collaborative approach to managing the City's future water, wastewater treatment, and stormwater needs with the goal of yielding sustainable, long-term water supplies for Los Angeles to ensure greater resilience to drought conditions and climate change. The One Water LA Plan is also intended as a step toward meeting the Mayor's Executive Directive to reduce the City's purchase of imported water by 50 percent by 2024 (City of Los Angeles 2014). Major challenges addressed in the One Water LA Plan include recurring drought, climate change, and the availability of recycled water in the future in light of declining wastewater volumes.

City of Los Angeles Water Integrated Resources Plan

The City of Los Angeles Water Integrated Resources Plan (IRP) was developed by multiple departments in order to address the facility needs of the City’s wastewater program, recycled water, and urban runoff/stormwater management through the year 2020. The Final IRP 5-Year Review was released in June 2012, which included 12 projects that were separated into two categories: (1) “Go Projects” for immediate implementation; and (2) “Go-If Triggered Projects” for implementation in the future once a trigger is reached (LASAN and LADWP 2012). Triggers for these projects include wastewater flow, population, regulations, or operational efficiency. Based on the Final IRP 5-Year Review, the Go Projects consisted of six capital improvement projects for which triggers were considered to have been met at the time the IRP EIR was certified. The Go-If Triggered Projects consisted of six capital improvement projects for which triggers were not considered to have been met at the time the IRP EIR was certified.

Since the implementation of the IRP, new programs and projects, which have resulted in a substantial decrease in wastewater flows, have affected the Go Projects and Go-If Triggered Projects. Based on the Final IRP 5-Year Review, two of the Go Projects have been moved to the Go-If Triggered category (Go Project 2 and Go Project 3) and two have been deferred beyond the 2020 planning window of the IRP (Go Project 4 and Go Project 5). Construction of wastewater storage facilities at the Donald C. Tillman Water Reclamation Plant (Go Project 1) has been completed. In addition, Go Project 6, involving the design of the North East Interceptor Sewer Phase II, is no longer being pursued (City of Los Angeles 2020).

City of Los Angeles Solid Waste Integrated Resources Plan

The Solid Waste Integrated Resources Plan (SWIRP) - most commonly known as the City’s Zero Waste Plan - lays out a long term plan through 2030 for the City’s solid waste programs, policies and environmental infrastructure (LASAN 2013). The SWIRP proposes an approach for the City to achieve a goal of 90 percent diversion by 2025. These targeted diversion rates would be implemented through an enhancement of existing policies and programs, implementation of new policies and programs, and the development of future facilities to meet the City’s recycling and solid waste infrastructure needs over a 20-year planning period.

The term “zero waste” refers to maximizing recycling, minimizing waste, reducing consumption, and encouraging the use of products with recycled/reused materials. As noted by the City, “zero
waste” is a goal and not a categorical imperative; the City is seeking to come as close to “zero waste” as possible. Based on the 2013 Zero Waste Progress Report and using the calculation methodology adopted by the State of California, the City achieved a landfill diversion rate of approximately 76 percent in 2012 (LASAN 2022f).

RENEW LA Plan

RENEW LA was adopted by the City Council in March 2006 for the purpose of facilitating a shift from solid waste disposal to resource recovery. This shift is predicted to result in “zero waste” and an overall diversion level of 90 percent by 2025. The plan focuses on combining key elements of existing reduction and recycling programs and infrastructure with new systems and conversion technologies to achieve resource recovery (without combustion) in the form of traditional recyclables, soil amendments, and renewable fuels, chemicals, and energy. The RENEW LA Plan also calls for reductions in the quantity of residual materials disposed in landfills and their associated environmental impacts.

City of Los Angeles Green New Deal

The City released the first Sustainable City pLAn in April 2015, which has been updated in 2019 as the City’s Green New Deal. The Green New Deal includes a multi-faceted approach to developing a locally sustainable water supply to reduce reliance on imported water, reducing water use through conservation, and increasing local water supply and availability.

City of Los Angeles Municipal Code

The City has adopted several ordinances, later codified in the Los Angeles Municipal Code (LAMC), in an effort to reduce water consumption, assure sewer capacity for new projects, reduce solid waste generation, and further energy efficiency in the City. A summary of the City’s key ordinances and regulations regarding utilities is provided below.

- **Ordinance No. 180,822** amended LAMC Chapter XII, Article 5 to establish water efficiency requirements for new development and renovation of existing buildings, and mandate installation of high efficiency plumbing fixtures in residential and commercial buildings.

- **Ordinance No. 181,480** amended LAMC Chapter IX by adding Article 9 (Green Building Code) to the LAMC to incorporate various provisions of the CALGreenCode. This ordinance added mandatory measures for newly constructed low-rise residential and non-residential buildings to reduce indoor water use by at least 20 percent by (1) using water saving fixtures or flow restrictions; and/or (2) demonstrating a 20-percent reduction in baseline water use.

- **Ordinance Nos. 181,899 and 183,833** amended LAMC Chapter VI, Article 4.4, Section 64.72, regarding stormwater and urban runoff to include new requirements, including Low Impact Development (LID) requirements that promote water conservation.

- **Ordinance No. 182,849** amended LAMC Chapter IX, Article 9 (Green Building Code) to mandate that for new water service or for additions or alterations requiring upgraded water service for landscaped areas of at least 1,000 square feet, separate sub-meters or metering devices shall be installed for outdoor potable water use. This ordinance also required that for new non-residential construction with at least 1,000 square feet of cumulative landscaped area, weather or soil moisture–based irrigation controllers and sensors be installed.
• **Ordinance No. 184,692** amended LAMC Chapter IX, Article 4 (Plumbing Code) by adopting by reference various sections of the California Plumbing Code. This ordinance also added requirements for plumbing fixtures and fixture fitting.

• **Ordinance No. 184,248** amended LAMC Chapter IX, Article 4 (Plumbing Code) and Article 9 (Green Building Code) to establish Citywide water efficiency standards and mandate a number of new fixture requirements and methods of construction for plumbing and irrigation systems.

• **LAMC Section 64.15** requires that the City perform a Sewer Capacity Availability Review (SCAR) when an applicant seeks a sewer permit to connect a property to the City sewer system, proposes additional discharge through their existing public sewer connection, or proposes a future sewer connection or development that is anticipated to generate 10,000 gallons or more of sewage per day.

• **LAMC Sections 64.11 and 64.12** require approval of a sewer permit, also called an “S” Permit, prior to connection to the wastewater system.

• **LAMC Sections 64.11.2 and 64.16.1** require the payment of fees for new connections to the City’s sewer system to assure the sufficiency of sewer infrastructure. New connections to the sewer system are assessed a Sewerage Facilities Charge. The rate structure for the Sewerage Facilities Charge is based upon wastewater flow strength as well as volume. The determination of wastewater flow strength for each applicable project is based on City guidelines for the average wastewater concentrations of two parameters, biological oxygen demand and suspended solids, for each type of land use.

• **Bureau of Engineering Special Order No. SO 06-0691** establishes design criteria for sewer systems to assure that new infrastructure provides sewer capacity and operating characteristics to meet City standards. Per the Special Order, lateral sewers, which are sewers 18 inches or less in diameter, must be designed for a planning period of 100 years. The Special Order also requires that sewers be designed so that the peak dry weather flow depth during their planning period does not exceed one-half of the pipe diameter (D) (i.e., depth-to-diameter ratio or d/D).

• **Ordinance No. 170,978** amended LAMC Sections 12.40 through 12.43 to establish consistent landscape requirements for new projects within the City. Section 12.40 contains general requirements, including a point system for specific project features and techniques in order to determine compliance with the ordinance, and defines exemptions from the ordinance. Section 12.41 sets minimum standards for water delivery systems (irrigation) to landscapes. Section 12.42 provides various regulations, of which two are applicable to stormwater management. The Heat and Glare Reduction regulation states among its purposes the design of vehicular use areas that reduce stormwater runoff and increase groundwater recharge; and the Soil and Watershed Conservation regulation is intended, among other purposes, to increase the “residence time of precipitation” within a given watershed. Implementation guidelines developed for the ordinance provide specific features and techniques for incorporation into projects, and include water management guidelines addressing runoff, infiltration, and groundwater recharge.

• **Ordinance No. 171,678** (the “Space Allocation Ordinance”) was enacted on August 13, 1997 pursuant to the California Solid Waste Reuse and the Recycling Access Act of 1991 (AB 1327), and has been incorporated in various sections of the LAMC. The Space Allocation Ordinance requires the provision of an adequate recycling area or room for collecting and loading recyclable materials in all new construction projects, all existing multi-family residential projects of four or more units where the addition of floor area is 25 percent or
more, and all other existing development projects where the addition of floor area is 30 percent or more.

- **Ordinance No. 181,519** was approved by the Los Angeles City Council on March 5, 2010, pertaining to a Citywide Construction and Demolition (C&D) Waste Recycling Ordinance that requires all mixed C&D waste generated within city limits be taken to City certified C&D waste processors. All haulers and contractors responsible for handling C&D waste must obtain a Private Waste Hauler Permit from LASAN prior to collecting, hauling and transporting C&D waste, and C&D waste can only be taken to City certified C&D processing facilities. The Department of Building and Safety aids in facilitating implementation of this ordinance; Building and Safety Building Permit applications will require contractors to either identify the permitted private solid waste hauler handling C&D waste from their City project or provide the contractor's own private solid waste hauler permit should the contractor choose to self-haul C&D waste (LASAN 2022).

City of Los Angeles General Plan

General Plan Framework Element

The Citywide General Plan Framework Element (Framework Element) establishes the conceptual basis for the City’s General Plan (City of Los Angeles 1995). The Framework Element sets forth a comprehensive Citywide long-range growth strategy and defines Citywide policies regarding land use, housing, urban form and neighborhood design, open space and conservation, economic development, transportation, infrastructure and public services.

Chapter 9, Infrastructure and Public Services, of the City’s Framework Element identifies goals, objectives, and policies for City utilities. This chapter responds to federal and State mandates to plan for adequate infrastructure in the future. The Framework Element supports AB 939 and its goals by encouraging “an integrated solid waste management system that maximizes source reduction and materials recovery and minimizes the amount of waste requiring disposal.” The Framework Element addresses many of the programs the City has implemented to divert waste from disposal facilities such as source reduction programs and recycling programs (e.g., Curbside Recycling Program and composting). Additional goals related to the proposed Project are listed on Table 3.18-1.

TABLE 3.18-1

<table>
<thead>
<tr>
<th>Relevant General Plan Utilities and Service Systems Goals, Objectives, and Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framework Element – Chapter 9 Infrastructure and Public Services</td>
</tr>
<tr>
<td>Goal/Objective/Policy</td>
</tr>
<tr>
<td>Goal 9A</td>
</tr>
<tr>
<td>Goal 9C</td>
</tr>
</tbody>
</table>

Source: City of Los Angeles, General Plan, Framework Element, re-adopted 2001.
Silver Lake-Echo Park-Elysian Valley Community Plan

The Silver Lake-Echo Park-Elysian Valley Community Plan provides a guide for the arrangement of land uses, streets, and services which will encourage and contribute to the economic, social and physical health safety, welfare and conveniences of the people who live and work in the community.

Water System Plan Objective 5: To set forth design standards for the water system relating to the total water demand and availability of supply, number and size of facilities, and to assure construction of facilities to be aesthetically compatible with adjacent lands and development.

3.18.3 Significance Thresholds and Criteria

The significance criteria used to evaluate the proposed Project impacts to utilities and service systems are based on Appendix G of the CEQA Guidelines. According to Appendix G of the CEQA Guidelines, the proposed Project would have a significant impact if it would:

- Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects. (Refer to Impact 3.18-1)

- Have sufficient water supplies available to serve the proposed Project and reasonably foreseeable future development during normal, dry and multiple dry years. (Refer to Impact 3.18-2)

- Result in a determination by the wastewater treatment provider which serves or may serve the proposed Project that it has adequate capacity to serve the proposed Project’s projected demand in addition to the provider’s existing commitments (Refer to Impact 3.18-3)

- Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals. (Refer to Impact 3.18-4)

- Not comply with federal, state, and local management and reduction statutes and regulations related to solid waste. (Refer to Impact 3.18-5)

In addition, the 2006 L.A. CEQA Thresholds Guide holds that the determination of significance shall be made on a case-by-case basis after considering the following factors:

Methodology

The environmental analysis of the potential impacts related to utilities and service systems is based on a review of the following information sources: the definition of the proposed Project provided in Chapter 2, Project Description, information included in the Water Resources Report and Water Quality Model (CWE 2019, 2020), as well as the information provided above in Section 3.16.1, Environmental Setting, all of which reflect the most up-to-date understanding of utilities and service systems in the Project area and vicinity. In the evaluation of existing utility capacities, it is conservatively assumed that the facilities would not be expanded prior to the Project construction. In addition, the environmental analysis was conducted in consultation with
relevant expert City departments, including LADWP (electrical supply and water supply) and LASAN (wastewater and solid waste).

The proposed Project would be regulated by the various laws, regulations, and policies summarized in Section 3.16.2, Regulatory Setting. Compliance by the proposed Project with applicable federal, State, and local laws and regulations is assumed in this analysis and local and State agencies would be expected to continue to enforce applicable requirements to the extent that they do so now.

2020 SLRC Master Plan Project Changes and Modeling Accuracy

Discussions regarding the groundwater supplies that would be required to refill the SLRC under the proposed Project rely specifically on the results of the Water Quality Model, which includes volumetric calculations for the different ways that water supplies would enter and exit the SLRC under the proposed Project (i.e., precipitation, pumping Pollock Wellfield groundwater, runoff from the Stormwater Capture Projects, overflow from Ivanhoe to Silver Lake, recirculation from Silver Lake to Ivanhoe reservoir, exfiltration, evaporation, transpiration, and overflow). Since the Water Quality Model was prepared, LADWP has halted its plans to implement the Stormwater Capture Projects. The elimination of stormwater runoff as a variable could therefore affect the accuracy of the Water Quality Model with respect to future water supplies. The discussion below provides reasoning for continued use of the Water Quality Model as the basis of the analysis despite this change.

Water levels in the reservoirs were projected to be similar under all modeled scenarios receiving Pollock Wellfield groundwater supplies regardless of receiving additional supplies from Stormwater Capture Projects (CWE 2020, p. 30). Furthermore, elimination of the additional runoff supplies from the Stormwater Capture Projects would have no effect on the volume and frequency of groundwater pumping from Pollock Wellfield during operations. Therefore, the results of the Water Quality Model remain accurate with respect to the proposed Project’s impacts on groundwater supplies. Other changes to the proposed Project since the year 2020, such as the addition of off-site parking spaces on existing streets, would also have no effect on utilities and service systems in the Project area.

3.18.4 Project Design Features

The following Project Design Features (PDFs) related to water supply and stormwater would be implemented as part of the Project:

- **PDF-UTIL-1: Drought-Tolerant Landscaping.** The Project will use a mix of native and drought-tolerant plants appropriate to the Los Angeles region to provide a plant palette adapted to climate change. Lawn would be used sparingly and strategically distributed where needed to support multifunctional cultural and recreational uses.

- **PDF-UTIL-2: Water-Efficient Irrigation.** Irrigation water would be pumped from the reservoirs to wetland habitat areas which would then flow back into the reservoirs. Transition habitat zones would also be irrigated with reservoir water on a separate cycle appropriate for the drought-tolerant, coastal scrub planting palette. Remaining upland habitat, lawn areas, and ornamental gardens would be irrigated via a potable water supply.
available from the LADWP distribution system which would require a dedicated meter. Recycled water may also be used to irrigate ornamental planting, should such water supplies become available in the future.

PDF-UTIL-3: Decentralized Drainage Strategy. To prevent untreated surface runoff from entering the reservoir waters, proposed Project will implement decentralized drainage facilities to capture and filter or infiltrate stormwater runoff from the developed portions of the Project site.

3.18.5 Impacts and Mitigation Measures

Utilities Expansion or Relocation

Impact 3.18-1: Would the proposed Project require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Construction

The proposed Project and off-site improvements would require minimal amounts of water for construction activities, such as cement mixing and dust control. Construction water demands may be met by imported water trucks or existing fire hydrants. Any wastewater generated by construction workers would be collected in portable toilet facilities and hand wash areas provided by the construction contractor, hauled off-site by a permitted waste hauler, and disposed of at a liquid-disposal station that has been permitted by the Regional Water Quality Control Board (RWQCB). As a result, substantial new wastewater flows would not be discharged into the public sewer system. The City’s water and wastewater treatment providers would have adequate capacity to serve the construction needs of the Project, and construction of new or expanded facilities would not be required. Therefore, there would be no impact with regard to water or wastewater treatment facilities.

Construction contractors would be required to implement BMPs pursuant to the General Construction Stormwater NPDES permit to ensure that surface water runoff does not entrain contaminants including fuels, oils, paints, and sediment. Surface water runoff would be subject to SWPPPs prepared for each construction area. No new or expanded stormwater drainage facilities would be required to capture stormwater during construction other than those proposed by the Project. Impacts to the existing municipal drainage system would be less than significant.

As discussed in section 3.6, Energy, electric power required for construction activities would be supplied to the Project site by LADWP and would be obtained from existing electrical lines that connect to the Project site. Construction would not require new or expanded electric power facilities, and no impact would occur.

Nearly all construction would occur within the boundary of the SLRC. The proposed Project includes construction of aboveground structures, such as the Education Center, the Multi-Purpose Facility, the upgraded Recreation Center, and shade pavilions, as well as installation of underground utilities. In addition, the proposed Project would involve offsite improvements
including the addition of bike lanes and/or parking along Silver Lake Boulevard and new parking along the south west side of the South Valley. As the proposed Project site and the surrounding neighborhood are highly urbanized, construction activities could require relocation of utilities that could disrupt service delivery. Implementation of Mitigation Measure UTIL-1 would ensure that the City coordinates with utility providers operating within proposed impact areas during design and prior to construction in order to ensure that temporary effects to existing utility connections are restored in communication with local customers. Thus, the proposed Project would not require or result in the relocation of water, wastewater treatment, stormwater drainage, electric power, natural gas, and telecommunications facilities. Impacts would be less than significant with mitigation.

Mitigation Measures:

UTIL-1 Underground Utilities Search and Coordination: During design and prior to construction of Project facilities, the City shall conduct an underground utilities search and coordinate with all utility providers that operate in the same public rights-of-way impacted by construction activities. The City shall ensure that any temporary disruption in utility service caused by construction is minimized and that any affected parties are notified in advance.

Significance Determination:

Less than Significant Impact with Mitigation Incorporated

Operation

The proposed Project would enhance existing recreational areas with the construction of more public recreational facilities and opportunities within the SLRC boundary, the environmental effects of which are evaluated throughout this Draft EIR. Proposed Project components would include landscaping, replanting, throughout the SLRC; the implementation of floating habitat wetlands, the addition of pathways and trails that provide passive and active recreational opportunities; built structures and buildings including proposed shade pavilions, seated terraces, picnic groves, reservoir overlooks and docs, the proposed Education Center, Silver Lake Recreation Center upgrades, expanded Dog Park, the proposed new Multi-Purpose Facility; and related facilities, such as lighting, underground utility connections, and additional parking. It is anticipated that the enhanced recreational facilities would result in increased day-use populations in the Project area, and would be used for occasional outdoor events (e.g., concerts, movie nights, or luncheons) that would draw local and regional populations to the Project site and increase demand for water consumption and wastewater generation.

The City’s existing water supplies are expected to be sufficient to serve the proposed buildings and structures described above, as they would not include water-intensive amenities, or substantial amounts of new employees and visitors that would consume substantial amounts of water. The Water Quality Model for the Project concluded that the groundwater supplies which are pumped into the reservoirs would be reduced under the proposed Project (CWE 2020). In order to reduce irrigated water demand, the Project would implement conservation strategies as part of the Project design, including use of native and drought-tolerant plant species appropriate for the region (See PDF-UTIL-1), and strategic irrigation of habitat, lawn areas, and ornamental gardens (See PDF-UTIL-2). Although water supplies would be sufficient for operation of the
proposed Project, improvements to the water system in the Project area may be required to provide adequate fire flow. Fire-flow requirements vary from 2,000 gallons per minute (gpm) in low density residential areas to 12,000 gpm in high-density commercial or industrial areas. A minimum residual water pressure of 20 pounds per square inch (psi) is to remain in the water system, with the required gallons per minute flowing. The required fire-flow for this project would be 4,000 gpm from four adjacent fire hydrants flowing simultaneously (Saunders, pers comm 2022). During project approval, regarding water main improvements, coordination with LADPW would be required to ensure sufficient fire flow would be available to serve the proposed Project. Therefore, construction of new or expanded water facilities would not be required to support the proposed Project. Impacts would be less than significant.

Wastewater from the proposed Project would be conveyed to the HWRP via the existing municipal sewer system. Currently, HWRP has approximately 175 MGD of remaining available capacity under average conditions (LASAN 2022c). Based on LASAN’s average flow projections for the HWRP, it is anticipated that average flows in 2025 would be approximately 265 MGD, and thus, the future remaining available capacity in 2025 would be approximately 185 MGD (LADWP 2018). Relative to existing and future wastewater treatment capacities at the HWRP, the limited amounts of wastewater that would be generated by workers and visitors to the Project site are not anticipated to substantially increase wastewater flows. Therefore, construction of new or expanded wastewater treatment facilities or sewer connections would not be required, and impacts would be less than significant.

Although the proposed facilities would increase areas of impermeable surfaces that could result in increased runoff rates and/or quantities, the proposed Project would implement decentralized drainage facilities to capture stormwater within the proposed Project site. As described in Section 3.10, Hydrology and Water Quality, the Project would comply with applicable design standards and permits regulating stormwater discharge, such as those included in the MS4 and LADPW Hydrology Manual, and implement LID strategies with BMPs (e.g., proposed bioswales and wetlands) to treat localized rainfall before routing the water into the reservoirs (See PDF-UTIL-3). Further, areas adjacent to the reservoir, such as the great lawn and seating terraces, would be designed for surface runoff to move thorough the proposed habitat island areas before entering the reservoirs. In other areas, stormwater runoff would be treated by infiltration gardens located throughout the SLRC (e.g., proposed picnic grove and ornamental gardens would drain to depressions in the landscape which would filter stormwater before it’s collected and piped into the reservoirs). At the proposed Knoll park zone, runoff from slopes would be collected in swales adjacent to the proposed Education Center and treated before entering Silver Lake Reservoir. Along the proposed promenade, biofiltration planting would be incorporated to treat stormwater runoff from its paving surfaces. Therefore, the proposed Project would not require or result in the construction of new or expanded stormwater facilities, and impacts would be less than significant.

As described previously, the Project would implement new underground utility connections for all proposed park zones except for the habitat islands. Electricity would be required to power various proposed facilities, including but not limited to lighting, buildings, and performance equipment hookups required for special events. Natural gas may be required to heat water and interior spaces, operate cooling equipment, and generate power for buildings. Other utility
improvements may include the installation of internet service and security cameras. As described in Section 3.6, Energy, the proposed Project incorporates a variety of conservation measures and features to reduce energy usage and minimize energy demand. The Project-related net increase to energy demands would be within LADWP’s projected energy supplies and would not necessitate the construction of new or expanded electric power facilities or natural gas facilities. The City would coordinate with utility providers operating within proposed impact areas during design and prior to construction in order to ensure that existing utility connections are not impacted.

Therefore, the proposed Project would not require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities. Impacts would be less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Water Supplies

Impact 3.18-2: Would the proposed Project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?

Construction

LADWP would have sufficient water supplies available to serve the Project’s water needs during construction, such as water for cement mixing and dust control. The relatively minor water supply needed for the proposed construction activities would leave sufficient water supplies available for other reasonably foreseeable future development during normal, dry, and multiple dry years. Therefore, impacts would be less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Operation

As described above in Section 3.8.1, Environmental Setting, the average total water supply in LADWP’s service area between the 2015-2016 fiscal year and the 2019-2020 fiscal year was approximately 500,000 AFY. The projected average-weather water pre-conservation demand for the City in 2030 is 660,200 AFY (LADWP 2021). Basin 4-12 has 41 operable wells with capacity of 255 cfs as of December 2020, and has provided as much as 89 percent of the City’s groundwater supply from the years 2015 to 2020 (LADWP 2021). The reservoirs at the SLRC are supplied with treated Basin 4-12 groundwater from Pollock Well #3, which is a part of LADWP’s Pollock Wellfield that altogether provides approximately 6 cfs of groundwater capacity to the
City (LADWP 2021). It should be noted that capacity figures are often higher than what is actually produced or the intended normal operations, and thus, the 6 cfs of capacity (43,700 AFY) is not indicative of the historic production figure at Pollock Wellfield.

The Water Quality Model (CWE 202) for the proposed Project estimates that the annual average volume of Basin 4-12 groundwater which is currently pumped into the SLRC is 241 AFY, and would be reduced to approximately 227 AFY following implementation of the proposed Project. (CWE 2020). Relative to existing Basin 4-12 capacities, the proposed Project would contribute to a beneficial impact on groundwater supplies. Further, over the course of the entire 20-year modeled period from 1999 to 2019, the Water Quality Model found that the maximum groundwater required by the proposed Project would be 338 AFY. If this volume were to be pumped during the operational life of the Proposed project, increased pumping from Pollock Well #3 would be negligible relative to volumes currently pumped from the Pollock Wellfield.

The projections for the Project’s groundwater needs, discussed above, are based on the proposed Project maintaining a suggested water level elevation range (between 445 and 447 feet) for optimal wetland habitats growth and sustainability. However, under certain future drought or other emergency conditions, supply augmentation and operational changes imposed under LADWP’s Water Shortage Contingency Plan (WSCP) could affect the availability of local groundwater supplies at Pollock Wellfield used to fill the Silver Lake and Ivanhoe Reservoirs (Refer to Section 2.7.4, Drought Emergency Contingencies). The ability to curtail groundwater pumping to the reservoirs during emergency droughts would ensure that potable water demands relying on groundwater are met. This need for operational flexibility based on demands, available supplies, and constraints is a key feature of the proposed Project operations.

The Project would also receive potable water from LADWP to supply the proposed buildings, structures, and other facilities, such as drinking fountains in the proposed park zones. The proposed potable water demands would not substantially increase the existing demand and would be within the UWMP demand projections.

Complying with applicable federal, State, and local regulations would ensure that impacts would be less than significant without mitigation. Further, the proposed Project would implement drought-tolerant landscaping and water-efficient irrigation design and practices (See PDF-UTIL-1 and PDF-UTIL-2). Therefore, the proposed Project would have sufficient water supplies available to serve the proposed Project and reasonably foreseeable future development during normal, dry, and multiple dry years. Impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact
Wastewater Treatment

Impact 3.18-3: Would the proposed Project result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?

Construction

As discussed for Impact 3.18-1, with respect to wastewater generation during construction, temporary facilities, such as portable toilet and hand wash areas, would be provided by the construction contractor. Any sewage generated from these facilities would be collected and hauled off-site to be disposed of at a liquid-disposal station that has been permitted by the RWQCB. As a result, substantial new wastewater flows would not be discharged into the City’s wastewater system. Therefore, the HWRP would have adequate capacity to serve the Project’s construction needs in addition to existing commitments, impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

Operation

As discussed for Impact 3.18-1, wastewater from the proposed Project would be conveyed to the HWRP via the existing municipal sewer system. Currently, the HWRP has approximately 175 MGD of remaining available capacity, and in 2025 the future remaining available capacity would be approximately 185 MGD (LADWP 2018). Relative to existing and future treatment capacity of the HWRP, the limited amounts of wastewater that would be generated by employees and visitors to the Project site are not anticipated to substantially increase wastewater flows. Project-related sanitary sewer connections and on-site infrastructure would be designed and constructed in accordance with applicable LASAN and California Plumbing Code standards. In addition, a final approval of the sewer capacity and required connection permit would be made at the time of permitting. Therefore, construction of new or expanded wastewater treatment facilities or sewer connections would not be required, and impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact
Solid Waste

Impact 3.18-4: Would the proposed Project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Construction

Construction of the proposed Project would generate solid waste, included but not limited to, soil, asphalt, wood, paper, glass, plastic, and metals that would require disposal at a landfill. Table 2-6 provides an estimate of the amount of construction-related waste that would be exported during Project construction. Across all park zones, the Project would import approximately 86,765 cubic yards and export approximately 89,003 cubic yards of soil during grading/excavation (a net export of 2,238 cubic yards of soil during this construction phase), and export approximately 30,332 cubic yards of soil (drainage/utilities trenching), approximately 21,450 cubic yards of demolition debris (asphalt, earthwork, and general construction debris) and approximately 13,264 cubic yards of site preparation debris (vegetation and minor earthwork). The volumes of solid waste generated during construction would contribute to the diminishing of available landfill capacity.

It is anticipated that the City would deliver the majority of its non-hazardous construction waste to the privately-owned Sunshine Canyon Landfill and/or LACSD’s Scholl Canyon Landfill, which are located nearest to the Project site and permitted to accept 12,100 TPD and 3,400 TPD, respectively. Further, both landfills are estimated to have capacity to operate beyond 2030 and would be available for the proposed construction duration (CalRecycle 2020a and 2020b). As required by City Ordinance No. 181,519 (Waste Hauler Permit Program), the inert solid waste and soil would require disposal at LACSD’s operating inert landfill, Azusa Land Reclamation, or at any of a number of State-permitted Inert Debris Engineered Fill Operations in the County, such as the Hanson Rock Quarry or United Rock Products in Irwindale.

Waste disposal for the Project would be subject to the California Integrated Waste Management Act requiring 50 percent diversion of all solid waste streams from landfills. Thus, the City would ensure that any recyclable materials recovered during construction activities are delivered to County- or privately-owned recycling facilities for recovery and reuse. Compliance with all applicable local, State, and federal regulations and statutes is required. Therefore, impacts to landfill capacity would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

Operation

The majority of the Project’s waste generation would occur during construction activities, as described above. Operation of the proposed park zones and buildings would not include activities that could generate substantial amounts of waste compared to existing conditions. Special events at the Project site would result in occasional, short-term increases in waste generation. The City would
limit attendees and provide recycling bins to reduce daily amounts of waste that would be sent to nearby landfills following the public events. In addition, occasional maintenance of proposed Project would involve invasive plant species removal, erosion control, sediment removal, and trash collection that would contribute to diminishing landfill capacities. However, given the capacity of nearby landfills, described above, and the limited operational waste generation that is anticipated for the Project, it is reasonable to assume that existing landfills would be adequate for serving the proposed Project. Solid waste collection services would be provided by LASAN similar to existing operations. Further, the additional permanent employees are not expected to contribute to a significant increase in solid waste. All applicable local, state, and federal regulations and statutes would be followed throughout operation. Impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

Solid Waste Regulations

Impact 3.18-5: Would the proposed Project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Construction

As discussed above for Impact 3.18-3, construction activities at the Project would generate large volumes of solid waste. A significant impact could occur if the construction of the proposed Project would conflict with any statutes and regulations governing solid waste. The City of Los Angeles has enacted numerous waste reduction and recycling programs in order to comply with the California Integrated Waste Management Act (AB 939), which requires every city in California to divert at least 50 percent of its annual waste and be consistent with AB 341, which sets a 75 percent recycling goal for California. The City of Los Angeles has also prepared a Solid Waste Integrated Resources Plan (SWIRP), which specifies that the City’s Zero Waste goal is to reduce, reuse, recycle, or covert the resources currently going to disposal so as to achieve an overall diversion rate of 90 percent or more by the year 2025. Further, the City of Los Angeles has adopted a Citywide Construction and Demolition (C&D) Waste Recycling Ordinance that requires all mixed construction and demolition waste generated within City limits be taken to City certified C&D waste processors. The handling of all debris and waste generated during construction would be required to be taken to a certified C&D waste processor. The Project development would comply with all other federal, state, and local statues and regulations related to solid waste. Impacts related to conflict with statutes and regulation governing solid waste generated during construction would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact
Operation

Operation and maintenance of the proposed Project is anticipated to increase amounts of solid waste generated at the Project site, due to drawing recreational visitors, horticultural maintenance, special events, and other activities discussed above. Operational refuse and trash would be removed from the sites and disposed of in an approved manner, consistent with applicable federal, state, and local statutes and regulations regarding solid waste, and oils or chemicals would be hauled to a disposal facility authorized to accept such materials. Compliance with all other applicable statutes and regulations in place relative to solid waste disposal is required. As such, operation-related impacts would be less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Cumulative Impact

Impact 3.18-6: Would the proposed Project construction and operation, when considered with related projects in the geographic scope, result in a cumulatively impact to utilities and service systems?

This section presents an analysis of the cumulative effects of the proposed Project in combination with other present and reasonably foreseeable future projects that could generate cumulatively considerable impacts to utilities and service systems. The geographic scope of analysis for cumulative utilities and service systems impacts encompasses similar present and future project sites within the Project area, as well as the utilities and services systems that supply the project sites with water, solid waste disposal services, electricity, etc. Table 3-2 identifies thirteen related projects that are planned or are under construction within the Project area that may have cumulatively considerable impacts when considered in combination with the proposed Project. The proposed development projects listed in which include mixed-use developments, a childcare facility, and commercial uses that would require similar utilities and service systems as the proposed Project.

Two related projects are currently in progress in proximity to the proposed Project site: the LADWP Aeration and Recirculation Project (Related Project 13), which involves installation of a bubble plume aeration system and a recirculation pipe system within Silver Lake and Ivanhoe Reservoirs, and the City of Los Angeles Bureau of Engineering (BOE) Sidewalk Repair Program (Related Project 13), under which sidewalk repairs and related improvements (e.g., street tree removal and utility relocations) would occur along various roadways surrounding the Project site. Due to their location within and in close proximity to the Project site, construction activities for these related projects would have the potential to result in impacts related to the relocation of utilities.

According to the 2020 IS/MND for Related Project 13, the project would not involve construction or relocation of utilities to serve the project. Additionally, it is anticipated that construction of
Related Project 13 would be complete by December 2022, prior to the start of the proposed Project construction period (LADWP 2020). Therefore, Related Project 13 would not contribute to cumulatively considerable impacts related to the relocation of utilities as a result of construction. However, Project 14 includes a 30-year program implementation period, from June 2017 through June 2047, and thus the improvements along West Silver Lake Drive, Van Pelt Place, Silver Lake Boulevard, and at the Duane Street/Silver Lake Boulevard may overlap with the proposed Project construction period. If the projects are constructed at the same time, the impacts to utilities could be cumulatively significant. However, according to the 2019 Program EIR, individual sidewalk repair projects may only require approximately 5 non-consecutive days for construction, or a maximum of 30 non-consecutive days of construction if extensive repairs are required (City of Los Angeles 2019). As such, any potential overlap with the proposed Project would not be for substantial amount of time. As stated in Section 3.18, Utilities and Services Systems, construction of the proposed Project would have a less than significant impact related to the relocation of utilities with implementation of Mitigation Measure UTIL-1. Furthermore, of construction timing and utilities work would be coordinated with BOE, the City agency responsible for administering Related Project #14 pursuant to CEQA. Therefore, with implementation of Mitigation Measure UTIL-1, the proposed Project would not contribute cumulatively considerable impacts related to utilities relocation.

All other related projects are located 650 feet or more away from the Project site. Therefore, even if construction of the related projects were to occur at the same time as the Project, construction the proposed Project would not have the potential to occur in the same areas as the other related projects, and would not contribute to combined, localized effects that result in the relocation of utilities. Construction and operation of the proposed Project would have less than significant impacts with regard to water supplies, wastewater treatment, and solid waste generation as it relates to local infrastructure capacities and regulatory reduction goals would be implemented for reduction of operational impacts.

The proposed Project would primarily be supplied by groundwater pumped from Basin 4-12, similar to existing conditions. However, during extended periods of drought, the proposed Project and related projects in the vicinity may both require Basin 4-12 for operations, which could result in cumulatively considerable impacts on the availability of Basin 4-12 groundwater supplies. As discussed in Section 2.7.3, Drought Emergency Contingencies, LADWP evaluates system capabilities and constraints annually and, in accordance with the 2020 UWMP Water Shortage Contingency Plan (WSCP), adjusts water supply availability to account for these constraints. The operational constraints may require modifications to the proposed Project’s water levels corresponding to overall system needs, including the need to prioritize use of local groundwater to augment potable water supplies during periods of drought. This need for operational flexibility based on demands, available supplies, and constraints is a key feature of SLRC operations. Thus, LADWP’s continued monitoring of water supplies and implementation of WSCP requirements for supply augmentation and operational changes would ensure that the impacts of the proposed Project and the related projects to local groundwater supplies would not be cumulatively considerable.

With regard to overall water supplies in the City, based on existing and planned water supplies and purchases in the LADWP service area, LADWP expects to have a reliable supply of up to
742,900 AF of water in 2045 under a multiple dry years scenario to meet future water demands in its service area (See Section 3.18, Utilities and Services Systems, Water Supply). Furthermore, the water demand for projects that are consistent with the allowable land uses, building area, and density contained in the City’s General Plan have been taken into account in the planned growth of the water distribution system. Development of each related project would be evaluated on a case-by-case basis to determine if they are consistent with the allowable land uses and densities pursuant to the applicable zoning and land use designations.

For projects that meet the requirements established in Sections 10910-10915 of the State Water Code (Senate Bills 610 and 221), a WSA report demonstrating sufficient water availability would be required prior to project approval to ensure LADWP has sufficient capacity to serve the project without affecting regional water supplies. Further, the Project and all of the related projects within the City would be required to meet the prescriptive water conservation plumbing fixture requirements of Sections 99.04.303 and 99.05.303 of the CALGreen Code, which would decrease the Project water demand. Because the LADWP has determined that it can supply the anticipated growth in the City of Los Angeles through the year 2045 based on the growth projections of the 2020 UWMP, and the Project would be designed with operational flexibility to reduce water levels as required by LADWP’s WSCP, the Project’s contribution to cumulative impacts would not be cumulatively considerable. As such, cumulative impacts on water supply would be less than significant.

As described in the discussion for Impact 3.18-4, the proposed Project would not result in a significant impact to landfill capacities. The majority of the Project’s waste generation would occur during construction activities. However, Sunshine Canyon Landfill, Scholl Canyon Landfill, and LACSD’s inert landfills have adequate capacity to accept construction waste and inert solid waste and soil that would be generated by the Project during temporary periods of construction, as well as the relatively lower daily amounts that would be generated during operation and maintenance activities. Further, the proposed Project would not result in a significant impact to solid waste reduction goals the proposed work would be conducted in compliance with all local, state, and federal regulations related to solid waste and its disposal. Similarly, the related projects would generate solid waste during construction and throughout their operational lifespans. Landfills in the related projects’ region have adequate capacity to accept wastes generated by each of the related projects into the foreseeable future. Further, the related projects would also be required comply with all federal, state, and local statutes and regulations related to solid waste and its disposal. Compliance with regulatory measures as they relate to solid waste generation would ensure that cumulative impacts remain less than significant through each project’s operation schedule. Thus, the proposed Project’s contribution to impacts related to solid waste would not be cumulatively considerable. Impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact
3.18.6 Summary of Impacts

Table 3.18-2 summarizes the impact significance determinations and lists mitigation measures related to utilities and service systems.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measure</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18-1: Utilities Expansion or Relocation</td>
<td>Mitigation Measure UTIL-1</td>
<td>LTSM</td>
</tr>
<tr>
<td>3.18-2: Water Supplies</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.18-3: Wastewater Treatment</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.18-4: Solid Waste</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.18-5: Solid Waste Regulations</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.18-6: Cumulative</td>
<td>None Required</td>
<td>LTS</td>
</tr>
</tbody>
</table>

NOTES:
NI = No Impact, no mitigation proposed
LTS = Less than Significant, no mitigation proposed
LTSM = Less than Significant Impact with Mitigation Incorporated
SU = Significant and Unavoidable

3.18.7 References

3. Environmental Setting, Impact Analysis, and Mitigation Measures

3.18 Utilities and Service Systems

—–, 2022e. CLARTS and Landfills. Available: https://www.lacitysan.org/san/faces/home/portal/s-lsh-wwd/s-lsh-wwd-s?_afrLoop=348090634496756&_afrWindowMode=0&_afrWindowId=null&_adf.ctrl-state=6rzgksu1_593#!/%40%40%3F_afrWindowId%3Dnull%26_afrLoop%3D348090634496756%26_afrWindowMode%3D0%26_adf.ctrl-state%3D6rzgksu1_597, accessed May 6, 2022.

3.18 Utilities and Service Systems

Personal communication, City of Los Angeles Bureau of Sanitation, July 2022.

Personal communication, City of Los Angeles Department of Water and Power, July 2022.

Personal communication, Fire Marshal Los Angeles Fire Department, August 2022.

This page intentionally left blank