3.6 Energy

This section analyzes impacts on energy resources due to construction and operation of the proposed Project. Section 15126.2 (b) of the California Environmental Quality Act (CEQA) Guidelines states that a project’s energy use shall be analyzed to determine the potential energy impacts of proposed projects, with particular emphasis on avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy, as well as being compliant with building codes and renewable energy features. Appendix G of the State CEQA Guidelines checklist, Section VI, Energy, includes questions to assist lead agencies when assessing a project’s potential energy impacts. Additionally, State CEQA Guidelines Appendix F provides guidance on information to use when evaluating a project’s energy use.

In accordance with the applicable State CEQA Guidelines Appendix G sections and utilizing guidance from State CEQA Guidelines Appendix F, this EIR includes relevant information and analyses that address the following three energy resources: electricity, natural gas, and transportation-related energy (petroleum-based fuels). Detailed energy demand calculations can be found in Appendix G of this Draft EIR. Information found herein, as well as other aspects of the proposed Project’s energy implications, are discussed in greater detail elsewhere in this Draft EIR, including in Chapter 2, Project Description, and Sections 3.8, Greenhouse Gas Emissions, and Section 3.18, Utilities and Service Systems. Project design features include PDF-UTIL-1: Drought-Tolerant Landscaping and PDF-UTIL-2: Water-Efficient Irrigation. Impacts to energy are less than significant, and no mitigation is required.

3.6.1 Environmental Setting

Existing Conditions

Electricity

Electricity, a consumptive utility, is a man-made resource. The production of electricity requires the consumption or conversion of energy resources, including water, wind, oil, gas, coal, solar, geothermal, and nuclear resources, into energy. The delivery of electricity involves a number of system components, for distribution and use. The electricity generated is distributed through a network of transmission and distribution lines commonly called a power grid.

Energy capacity, or electrical power, is generally measured in watts (W) while energy use is measured in watt-hours (Wh). For example, if a light bulb has a capacity rating of 100 W, the energy required to keep the bulb on for 1 hour would be 100 Wh. If ten 100 W bulbs were on for 1 hour, the energy required would be 1,000 Wh or 1 kilowatt-hour (kWh). On a utility scale, a generator’s capacity is typically rated in megawatts (MW), which is one million watts, while energy usage is measured in megawatt-hours (MWh) or gigawatt-hours (GWh), which is one billion watt-hours.

The Los Angeles Department of Water and Power (LADWP) provides electrical service throughout the City, including the proposed Project site, serving approximately 4 million people within a service area of approximately 465 square miles. Electrical service provided by LADWP is divided into two planning districts: Valley and Metropolitan. The Valley Planning District
includes the LADWP service area north of Mulholland Drive, and the Metropolitan Planning District includes the LADWP service area south of Mulholland Drive. The proposed Project site is located within LADWP’s Metropolitan Planning District.

LADWP generates power from a variety of energy sources, including hydropower, coal, gas, nuclear sources, and renewable resources, such as wind, solar, and geothermal sources. According to LADWP’s 2017 Power Strategic Long-Term Resource Plan, LADWP has a net dependable generation capacity greater than 7,531 MW (LADWP 2017a). On August 31, 2017, LADWP’s power system experienced a record instantaneous peak demand of 6,502 MW (LADWP 2022). Approximately 34 percent of LADWP’s 2019 electricity purchases were from renewable sources, which is similar to the 32 percent statewide percentage of electricity purchases from renewable sources (CEC 2020). The annual electricity sale to customers for the 2017–2018 fiscal year was approximately 25,833 million kWh (LADWP 2017b).

Natural Gas

Natural gas is a combustible mixture of simple hydrocarbon compounds (primarily methane) that is used as a fuel source. Natural gas consumed in California is obtained from naturally occurring reservoirs but relies upon out-of-state imports for nearly 90 percent of its natural gas supply (CEC 2022a). A majority of natural gas consumed in California is for electricity generation, along with the industrial, residential, and commercial sections (CEC 2022a). Among energy commodities consumed in California, natural gas accounts for one-third of them (CEC, 2022b). Natural gas is measured in terms of cubic feet (cf).

Natural gas is provided to a majority of the City, including portions of the proposed Project vicinity, by SoCalGas. SoCalGas is the principal distributor of natural gas in Southern California, serving residential, commercial, and industrial markets. SoCalGas serves approximately 21.6 million customers in more than 500 communities encompassing approximately 20,000 square miles throughout Central and Southern California, from the City of Visalia to the Mexican border (SoCalGas 2022).

SoCalGas receives gas supplies from several sedimentary basins in the western U.S. and Canada, including supply basins located in New Mexico (San Juan Basin), West Texas (Permian Basin), the Rocky Mountains, and Western Canada as well as local California supplies (California Gas and Electric Utilities 2020). The traditional, southwestern U.S. sources of natural gas will continue to supply most of SoCalGas’ natural gas demand. The Rocky Mountain supply is available but is used as an alternative supplementary supply source, and the use of Canadian sources provide only a small share of SoCalGas supplies due to the high cost of transport (California Gas and Electric Utilities 2020). Gas supply available to SoCalGas from California sources averaged 97 million cubic feet (cf) per day in 2019 (the most recent year for which data are available) (California Gas

and Electric Utilities 2020). Also, the annual natural gas sale to customers in 2019 was approximately 879,285 million cf (California Gas and Electric Utilities 2020).²

With the introduction of Los Angeles’s Green New Deal in 2019, the City aims to reduce greenhouse gas emissions, which involves electrification of all new municipally-owned buildings and major building renovations. Building electrification is a key step in achieving the 2030 goal of carbon neutrality. Building electrification requires no use of fossil fuels on-site, including natural gas. The proposed Project would not implement natural gas in areas where it is typically used for buildings and instead would use electric alternatives that are available. Natural gas may still be used in the proposed Project for mobile sources (i.e., natural gas-fueled vehicles).

Transportation Energy

According to the CEC, transportation accounted for about 41 percent of California’s total energy consumption in 2017 based on a carbon dioxide equivalent basis (CEC 2019). In 2019, California consumed 15.4 billion gallons of gasoline and 3.6 billion gallons of diesel fuel (CEC 2021).³ Petroleum-based fuels currently account for more than 90 percent of California’s transportation fuel use (CEC 2016). However, the state is now working on developing flexible strategies to reduce petroleum use. Over the last decade, California has implemented several policies, rules, and regulations to improve vehicle efficiency, increase the development and use of alternative fuels, reduce air pollutants and GHGs from the transportation sector, and reduce VMT. Accordingly, gasoline consumption in California has declined. The CEC predicts that the demand for gasoline and transportation fossil fuels in general will continue to decline over the next 10 years primarily due to improvements in fuel efficiency and increased electrification (CEC 2019). According to fuel sales data from the CEC, fuel consumption in Los Angeles County was approximately 3.56 billion gallons of gasoline and 0.56 billion gallons of diesel fuel in 2019 (CEC 2021).

3.6.2 Regulatory Framework

There are several plans, regulations, and programs that include policies, requirements, and guidelines regarding energy at the federal, state, regional, and City of Los Angeles levels. As described below these plans, guidelines, and laws include the following:

- Corporate Average Fuel Economy (CAFE) Standards
- Federal Energy Policy and Conservation Act
- Senate Bill 1389
- Renewables Portfolio Standard
- California Building Standards Code
 - California Building Energy Efficiency Standards (Title 24, Part 6)
 - California Green Building Standards (Title 24, Part 11)

² Daily natural gas usage in 2019 was 2,409 million cf, annual value derived by multiplying daily values by 365 days.
³ Diesel is adjusted to account for retail (49 percent) and non-retail (51 percent) diesel sales.
3.6 Energy

- California Assembly Bill 1493
- California Air Resources Board
 - Climate Change Scoping Plan
 - Advanced Clean Car Program
 - Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling
 - In-Use Heavy-Duty Diesel-Fueled Fleets Regulation
- SB 375 (Sustainable Communities Strategy)
- Regional Transportation Plan/Sustainable Communities Strategy
- Green New Deal
- Green Building Code
- City of Los Angeles Mobility Plan 2035

Federal

Energy Independence and Security Act of 2007

The Energy Independence and Security Act of 2007 (EISA) facilitates the reduction of national greenhouse gas (GHG) emissions by requiring the following:

- Increasing the supply of alternative fuel sources by setting mandatory Renewable Fuel Standards (RFS) that requires fuel producers to use at least 36 billion gallons of biofuel in 2022;
- Prescribing or revising standards affecting regional efficiency for heating and cooling products, procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances;
- Requiring approximately 25 percent greater efficiency for light bulbs by phasing out incandescent light bulbs between 2012 and 2014; requiring approximately 200 percent greater efficiency for light bulbs, or similar energy savings, by 2020; and
- While superseded by the United States Environmental Protection Agency (USEPA) and National Highway Traffic Safety Administration (NHTSA) actions described above (i) establishing miles per gallon targets for cars and light trucks and (ii) directing the NHTSA to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for trucks.

Additional provisions of EISA address energy savings in government and public institutions, promote research for alternative energy, additional research in carbon capture, international energy programs, and the creation of “green jobs.”

A “green job,” as defined by the United States Department of Labor, is a job in business that produces goods or provides services that benefit the environment or conserve natural resources.
Corporate Average Fuel Economy Standards

Established by the U.S. Congress in 1975, the Corporate Average Fuel Economy (CAFE) Standards (49 CFR Parts 531 and 533) reduce energy consumption by increasing the fuel economy of cars and light trucks. The NHTSA and USEPA jointly administer the CAFE standards. The U.S. Congress has specified that CAFE standards must be set at the “maximum feasible level” with consideration given for: (1) technological feasibility; (2) economic practicality; (3) effect of other standards on fuel economy; and (4) need for the nation to conserve energy. When these standards are raised, automakers respond by creating a more fuel-efficient fleet. In 2012, the NHTSA established final passenger car and light truck CAFE standards for model years 2017 through 2021, which the agency projects will require in model year 2021, on average, a combined fleet-wide fuel economy of 40.3 to 41.0 miles per gallons (mpg). Fuel efficiency standards for medium- and heavy-duty trucks have been jointly developed by USEPA and NHTSA. The Phase 1 heavy-duty truck standards apply to combination tractors, heavy-duty pickup trucks and vans, and vocational vehicles for model years 2014 through 2018, and result in a reduction in fuel consumption from 6 to 23 percent over the 2010 baseline, depending on the vehicle type (USEPA 2011). USEPA and NHTSA have also adopted the Phase 2 heavy-duty truck standards, which cover model years 2021 through 2027 and require the phase-in of a 5 to 25 percent reduction in fuel consumption over the 2017 baseline depending on the compliance year and vehicle type (USEPA 2018).

In March 2020, the USEPA and NHTSA issued the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule that would maintain the CAFE standards applicable in model year 2020 for model years 2021 through 2026. The estimated CAFE standards for model year 2020 are 43.7 miles per gallon (mpg) for passenger cars and 31.3 mpg for light trucks, projecting an overall industry average of 37 mpg, as compared to 46.7 mpg under the standards issued in 2012. However, consistent with President Biden’s executive order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis, USEPA and NHTSA are now evaluating whether and how to replace the SAFE Rule (Union of Concerned Scientists v. NHTSA 2021).

Federal Energy Policy and Conservation Act

The Energy Policy and Conservation Act of 1975 (EPCA) is a United States Act of Congress that responded to the 1973 oil crisis by creating a comprehensive approach to federal energy policy. The primary goals of EPCA are to increase energy production and supply, reduce energy demand, provide energy efficiency, and give the executive branch additional powers to respond to disruptions in energy supply. Most notably, EPCA established the Strategic Petroleum Reserve, the Energy Conservation Program for Consumer Products, and Corporate Average Fuel Economy regulations.

State

Senate Bill 1389

Senate Bill (SB) 1389 (Public Resources Code Sections 25300–25323; SB 1389) requires the California Energy Commission (CEC) to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state’s electricity, natural gas, and
transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state’s economy; and protect public health and safety (Public Resources Code Section 25301[a]). The 2020 Integrated Energy Policy Report, the latest published report from CEC, provides the results of the CEC’s assessments related to energy sector trends, building decarbonization and energy efficiency, zero-emission vehicles (ZEV), energy equity, climate change adaptation, electricity reliability in Southern California, natural gas assessment, and electricity, natural gas, and transportation energy demand forecasts.

Renewables Portfolio Standard

First established in 2002 under SB 1078, California’s Renewables Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable energy resources to 33 percent by 2020 and 50 percent by 2030 (CPUC 2018a). SB 350, signed October 7, 2015, is the Clean Energy and Pollution Reduction Act of 2015. The objectives of SB 350 are: (1) to increase the procurement of electricity from renewable sources from 33 percent to 50 percent; and (2) to double the energy savings in electricity and natural gas final end uses of retail customers through energy efficiency and conservation. On September 10, 2018, former Governor Jerry Brown signed SB 100, which further increased California’s RPS and requires retail sellers and local publicly owned electric utilities to procure eligible renewable electricity for 44 percent of retail sales by December 31, 2024, 52 percent by December 31, 2027, and 60 percent by December 31, 2030, and that the California Air Resources Board (CARB) should plan for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045.

The California Public Utilities Commission (CPUC) and the CEC jointly implement the RPS program. The CPUC’s responsibilities include: (1) determining annual procurement targets and enforcing compliance; (2) reviewing and approving each investor-owned utility’s renewable energy procurement plan; (3) reviewing contracts for RPS-eligible energy; and (4) establishing the standard terms and conditions used in contracts for eligible renewable energy (CPUC 2018b).

In March 2021, the CEC, CPUC, and CARB issued an SB 100 Joint Agency Report that assesses barriers and opportunities to implementing the 100 percent clean electricity policy (CEC 2021b). The report’s initial findings suggest that the goals of SB 100 are achievable, though opportunities remain to reduce overall system costs; however, the report also notes that the findings are intended to inform state planning and are not intended as a comprehensive nor prescriptive roadmap to 2045 and future work is needed on critical topics such as system reliability and land use and further address energy equity and workforce needs (CEC 2021b). Refer to Section 3.8, Greenhouse Gas Emissions, of this Draft EIR for additional details regarding this regulation.

California Building Standards

California Building Energy Efficiency Standards (Title 24, Part 6)

The California Building Energy Efficiency Standards for Residential and Nonresidential Buildings (California Code of Regulations, Title 24, Part 6) were adopted to ensure that building construction and system design and installation achieve energy efficiency and preserve outdoor and indoor environmental quality. The current California Building Energy Efficiency Standards (Title 24 standards) are the 2019 Title 24 standards, which became effective on January 1, 2020.
The 2019 Title 24 standards continue to improve upon the 2016 Title 24 standards for new construction of, and additions and alterations to, residential and nonresidential buildings which include efficiency improvements to the residential standards for attics, walls, water heating, and lighting, and efficiency improvements to the non-residential standards include alignment with the American Society of Heating and Air-Conditioning Engineers (ASHRAE) 90.1-2017 national standards (CEC 2018c).

California Green Building Standards (Title 24, Part 11)

California Assembly Bill 1493 (AB 1493, Pavley)

In response to the transportation sector accounting for more than half of California’s carbon dioxide (CO2) emissions, Assembly Bill (AB) 1493 (commonly referred to as CARB’s Pavley regulations), enacted on July 22, 2002, requires CARB to set GHG emission standards for new passenger vehicles, light duty trucks, and other vehicles manufactured in and after 2009 whose primary use is non-commercial personal transportation. Phase I of the legislation established standards for model years 2009–2016 and Phase II established standards for model years 2017–2025 (CARB 2002; USEPA 2012). In September 2019, the USEPA published the SAFE Vehicles Rule in the federal register (Federal Register, Vol. 84, No. 188, Friday, September 27, 2019, Rules and Regulations, 51310–51363) that maintains the vehicle mpg standards applicable in model year 2020 for model years 2021 through 2026. In November 2019, California and 23 other states and environmental groups filed a petition in the U.S. District Court in Washington, DC for the USEPA to reconsider the published rule. The Court has not yet ruled on these petitions.

As discussed in the *Federal* subsection above, in March 2020, despite the pending petitions, the U.S. DOT and the U.S. EPA issued the SAFE Vehicles Rule, which amends existing CAFE standards and tailpipe carbon dioxide emissions standards for passenger cars and light trucks. Refer to Section 3.8, *Greenhouse Gas Emissions*, of this Draft EIR for additional details regarding this regulation.

California Air Resources Board

Scoping Plan

CARB adopted the 2017 Climate Change Scoping Plan in December 2017 (CARB 2017a). The 2017 Climate Change Scoping Plan identifies technologically feasible and cost-effective strategies to ensure that California meets its GHG reduction targets in a way that promotes and rewards innovation, continues to foster economic growth, and delivers improvements to the environment and public health. The 2017 Climate Change Scoping Plan includes policies to
require direct GHG reductions at some of the state’s largest stationary sources and mobile sources. These policies include the use of lower GHG fuels, efficiency regulations, and the Cap-and-Trade program, which constraints and reduces emissions at covered sources (CARB 2017a). The 2017 Climate Change Scoping Plan strategies have co-benefits of improving energy and transportation fuel efficiency. Refer to Section 3.8, *Greenhouse Gas Emissions*, of this Draft EIR for additional details regarding this plan.

Advanced Clean Car Program

The Advanced Clean Cars emissions-control program was approved by CARB in 2012 and is closely associated with the Pavley regulations (CARB 2017b). The program requires a greater number of zero-emission vehicle models for years 2015 through 2025 to control smog, soot and GHG emissions. This program includes the Low-Emissions Vehicle (LEV) regulations to reduce criteria pollutants and GHG emissions from light- and medium-duty vehicles; and the ZEV regulations to require manufacturers to produce an increasing number of pure ZEVs (meaning battery and fuel cell electric vehicles) with the provision to produce plug-in hybrid electric vehicles (PHEV) between 2018 and 2025. In particular, implementation of the ZEV and PHEV regulations reduce transportation fuel consumption by increasing the number of vehicles that are partially or fully electric-powered. Effective November 26, 2019, the federal SAFE Vehicles Rule Part One: One National Program withdraws the California waiver for the GHG and ZEV programs under Section 209 of the Clean Air Act, which revokes California's authority to implement the Advanced Clean Cars and ZEV mandates.

Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling

In 2004, CARB adopted an Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling in order to reduce public exposure to diesel particulate matter emissions (Title 13 California Code of Regulations [CCR] Section 2485). The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure does not allow diesel-fueled commercial vehicles to idle for more than five minutes at any given location. While the goal of this measure is primarily to reduce public health impacts from diesel emissions, compliance with the regulation also results in energy savings in the form of reduced fuel consumption from unnecessary idling.

In-Use Heavy-Duty Diesel-Fueled Fleets Regulation

Because off-road vehicles that are used in construction and other related industries can last 30 years or longer, most of those that are in service today are still part of an older fleet that do not have emission controls.

In 2007, CARB approved the “In-Use Off-Road Diesel Fueled Fleets Regulation” to reduce emissions from existing (in-use) off-road diesel vehicles that are used in construction and other industries (13 CCR Section 2449). It also establishes emission rates targets for the off-road vehicles that decline over time to accelerate turnover to newer, cleaner engines and require exhaust retrofits to meet these targets. Revised in October 2016, the regulation enforced off-road restrictions on fleets adding vehicles with older tier engines and started enforcing beginning July
1, 2014. By each annual compliance deadline, a fleet must demonstrate that it has either met the fleet average target for that year or has completed the Best Available Control Technology requirements (BACT). Large fleets have compliance deadlines each year from 2014 through 2023, medium fleets each year from 2017 through 2023, and small fleets each year from 2019 through 2028. While the goal of this regulation is primarily to reduce public health impacts from diesel emissions, compliance with the regulation also results in energy savings in the form of reduced fuel consumption from the use of more fuel-efficient engines.

SB 375 (Sustainable Communities Strategy)

In 2008, SB 375, the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the 2008 Scoping Plan (since updated to 2017 Climate Change Scoping Plan) for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associate with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce vehicle miles traveled (VMT) and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 18 metropolitan planning organizations (MPOs). The Southern California Association of Governments (SCAG) is the MPO for the Southern California region, which includes counties of Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial.

Regional

Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS)

SB 375 requires each MPO to prepare a Sustainable Communities Strategy (SCS) in their regional transportation plan. In general, the SCS outlines a development pattern for the region, which, when integrated with the transportation network and other transportation measures and policies, would reduce vehicle miles traveled from automobiles and light duty trucks and thereby reduce GHG emissions from these sources. For the SCAG region, the 2020–2045 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), adopted on September 3, 2020, is the current RTP/SCS and is an update to the 2016–2040 RTP/SCS.

The 2020–2045 RTP/SCS focuses on the continued efforts of the previous RTP/SCS plans for an integrated approach in transportation and land use strategies in development of the SCAG region through horizon year 2045. The 2020–2045 RTP/SCS projects that the SCAG region will meet the GHG per capita reduction targets established for the SCAG region of 8 percent by 2020 and 19 percent by 2035. Additionally, its implementation is projected to reduce VMT per capita for the year 2045 by 4.1 percent compared to baseline conditions for the year. Rooted in the 2008 and 2012 RTP/SCS plans, the 2020–2045 RTP/SCS includes “Core Vision” that centers on maintaining and better managing the transportation network for moving people and goods while expanding mobility choices by location housing, jobs, and transit closer together, and increasing investments in transit and complete streets. In addition, refer to Section 3.8, *Greenhouse Gas Emissions*, of this Draft EIR for additional details regarding these requirements.
Local

Green New Deal

In April 2019, Mayor Eric Garcetti released the Green New Deal, a program of actions designed to create sustainability-based performance targets through 2050 designed to advance economic, environmental, and equity objectives (City of Los Angeles 2019). L.A.’s Green New Deal is the first four-year update to the City’s first Sustainable City pLAn that was released in 2015 and therefore replaces and supersedes the Sustainable City pLAn (City of Los Angeles 2015). It augments, expands, and elaborates in more detail L.A.’s vision for a sustainable future and it tackles the climate emergency with accelerated targets and new aggressive goals.

Within the Green New Deal, climate mitigation is one of eight explicit benefits that help define its strategies and goals. These include reducing GHG emissions through near-term outcomes:

- Reduce potable water use per capita by 22.5 percent by 2025; 25 percent by 2035; and maintain or reduce 2035 per capita water use through 2050.
- Reduce building energy use per square foot for all building types 22 percent by 2025; 34 percent by 2035; and 44 percent by 2050 (from a baseline of 68 thousand British thermal units per square foot (mBTU/sqft) in 2015).
- All new buildings will be net zero carbon by 2030 and 100 percent of buildings will be net zero carbon by 2050.
- Increase cumulative new housing unit construction to 150,000 by 2025; and 275,000 units by 2035.
- Ensure 57 percent of new housing units are built within 1,500 feet of transit by 2025; and 75 percent by 2035.
- Increase the percentage of all trips made by walking, biking, micro-mobility/matched rides or transit to at least 35 percent by 2025, 50 percent by 2035, and maintain at least 50 percent by 2050.
- Reduce VMT per capita by at least 13 percent by 2025; 39 percent by 2035; and 45 percent by 2050.
- Increase the percentage of electric and zero emission vehicles in the city to 25 percent by 2025; 80 percent by 2035; and 100 percent by 2050.
- Increase landfill diversion rate to 90 percent by 2025; 95 percent by 2035 and 100 percent by 2050.
- Reduce municipal solid waste generation per capita by at least 15 percent by 2030, including phasing out single-use plastics by 2028 (from a baseline of 17.85 pounds (lbs.) of waste generated per capita per day in 2011).
- Eliminate organic waste going to landfill by 2028.
- Reduce urban/rural temperature differential by at least 1.7 degrees by 2025; and 3 degrees by 2035.
- Ensure the proportion of Angelenos living within 1/2 mile of a park or open space is at least 65 percent by 2025; 75 percent by 2035; and 100 percent by 2050.
Green Building Code

Chapter IX of the Los Angeles Municipal Code (LAMC) is referred to as the “Los Angeles Green Building Code.” which incorporates by reference portions of the CALGreen Code. Specific mandatory requirements and elective measures are provided for three categories: (1) low-rise residential buildings; (2) nonresidential and high-rise residential buildings; and (3) additions and alterations to nonresidential and high-rise residential buildings. The Los Angeles Green Building Code includes mandatory measures for newly constructed nonresidential and high-rise residential buildings. The Los Angeles Green Building Code includes some requirements that are more stringent than state requirements such as increased requirements for electric vehicle charging spaces and water efficiency, which results in potentially greater energy demand reductions from improved transportation fuel efficiency and water efficiency. Refer to Section 3.8, Greenhouse Gas Emissions, of this Draft EIR for additional details.

City of Los Angeles Mobility Plan 2035

In August 2015, the City Council adopted Mobility Plan 2035 (Mobility Plan), which serves as the City’s General Plan circulation element. The City Council has adopted several amendments to the Mobility Plan since its initial adoption, including the most recent amendment on September 7, 2016 (Los Angeles City Planning Department 2016). The Mobility Plan incorporates “complete streets” principles and lays the policy foundation for how the City’s residents interact with their streets. The Mobility Plan includes five main goals that define the City’s high-level mobility priorities:

(1) Safety First
(2) World Class Infrastructure
(3) Access for All Angelenos
(4) Collaboration, Communication, and Informed Choices
(5) Clean Environments and Healthy Communities

Each of the goals contains objectives and policies to support the achievement of those goals.

3.6.3 Significance Thresholds and Criteria

The significance criteria used to evaluate the proposed Project impacts to energy are based on Appendix G of the State CEQA Guidelines. According to Appendix G of the State CEQA Guidelines, the proposed Project would have a significant impact if it would:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation. (Refer to Impact 3.6-1)
- Conflict with or obstruct a state or local plan for renewable energy or energy efficiency. (Refer to Impact 3.6-2)

For this analysis, the State CEQA Guidelines Appendix G Thresholds are relied upon. Appendix F of the State CEQA Guidelines was prepared in response to the requirement in Public Resources Code Section 21100(b)(3), which states that an EIR shall include a detailed statement setting
forth “[m]itigation measures proposed to minimize significant effects of the environment, including, but not limited to, measures to reduce the wasteful, inefficient, and unnecessary consumption of energy.” The analysis utilizes factors and considerations identified in Appendix G and Appendix F of the State CEQA Guidelines, as appropriate, to assist in answering the Appendix G questions. The factors to evaluate energy impacts under Impact 3.6-1 include:

a) The Project’s energy requirements and its energy use efficiencies by amount and fuel type for each stage of the Project including construction, operation, maintenance, and/or removal. If appropriate, the energy intensiveness of materials may be discussed. In addition, this analysis considers whether the Project would consume a substantially greater amount of energy, in either the construction or operational phase, than similar projects, in order to evaluate whether the Project would use energy that is “wasteful, inefficient, and unnecessary”;

b) The effects of the Project on local and regional energy supplies and on requirements for additional capacity;

c) The effects of the Project on peak and base period demands for electricity and other forms of energy;

d) The effects of the Project on energy resources; and

e) The Project’s projected transportation energy use requirements and its overall use of efficient transportation alternatives.

In addition, with regard to potential impacts to energy, the 2006 L.A. CEQA Thresholds Guide states that a determination of significance shall be made on a case-by-case basis considering the following factors:

- The extent to which the project would require new (off-site) energy supply facilities and distribution infrastructure; or capacity-enhancing alterations to existing facilities;
- Whether and when the needed infrastructure was anticipated by adopted plans; and
- The degree to which the project design and/or operations incorporate energy-conservation measures, particularly those that go beyond City requirements.

The first and second bullet list items from the 2006 L.A. CEQA Thresholds Guide are addressed in Section 3.18, Utilities and Service Systems, of this Draft EIR (see Impact 3.18-1). The third bullet list item is evaluated under Impact 3.6-1 as follows:

f) The degree to which the project design and/or operations incorporate energy-conservation measures, particularly those that go beyond City requirements.

In accordance with Appendix G and Appendix F of the State CEQA Guidelines, the degree to which the proposed Project complies with existing energy standards and whether the Project conflicts with adopted energy conservation plans are considered, as appropriate, to evaluate impacts under Impact 3.6-2.

Methodology

This analysis addresses the proposed Project’s potential energy usage, including electricity, natural gas, and transportation fuel. Energy consumption during both construction and operation is assessed. Specific analysis methodologies are discussed below. Energy calculations are
provided in Appendix G of this Draft EIR, and are based on the same assumptions used in Section 3.3, *Air Quality*, and Section 3.8, *Greenhouse Gas Emissions*.

3.6.4 Project Design Features

The following Project Design Features (PDF) are applicable to the Project.

PDF-UTIL-1: Drought-Tolerant Landscaping and PDF-UTIL-2: Water-Efficient Irrigation, as described in Section 3.18, *Utilities and Service Systems*.

3.6.5 Impacts and Mitigation Measures

The proposed Project would consume energy during construction and operational activities. Sources of energy for these activities would include electricity usage, natural gas consumption, and transportation fuels (diesel and gasoline).

Consumption of Energy Resources

Impact 3.6-1: Would the proposed Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

a) The proposed Project’s energy requirements and its energy use efficiencies by amount and fuel type for each stage of the proposed Project including construction, operation, maintenance, and/or removal. If appropriate, the energy intensiveness of materials may be discussed.

Construction

During proposed Project construction, energy would be consumed in the form of electricity on a limited basis for powering lights, electronic equipment, and for water conveyance for dust control. Proposed Project construction would also consume energy in the form of petroleum-based fuels associated with the use of off-road construction vehicles and equipment on the proposed Project site, construction workers traveling to and from the proposed Project site, and delivery and haul truck trips (e.g., hauling of demolition material to off-site reuse and disposal facilities).

Table 3.6-1 provides a summary of the annual average electricity, gasoline fuel, and diesel fuel estimated to be consumed during proposed Project construction. Each of these is discussed and analyzed in greater detail in the subsections below. As specified earlier, these figures represent a highly conservative estimate in that it assumes the maximum volume of on-road and off-road construction equipment usage every day for each phase of construction.
Table 3.6-1

Summary of Energy Use During Proposed Project Construction a

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Total Quantity</th>
<th>Annual Average Quantity During Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Office</td>
<td>181,824 kWh</td>
<td>38,970 kWh</td>
</tr>
<tr>
<td>Electricity from Water (Dust Control)</td>
<td>78,321 kWh</td>
<td>16,786 kWh</td>
</tr>
<tr>
<td>Total Electricity</td>
<td>260,145 kWh</td>
<td>55,756 kWh</td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Road Construction Equipment</td>
<td>88,858 gallons</td>
<td>19,045 gallons</td>
</tr>
<tr>
<td>Off-Road Construction Equipment</td>
<td>0 gallons</td>
<td>0 gallons</td>
</tr>
<tr>
<td>Total Gasoline</td>
<td>88,858 gallons</td>
<td>19,045 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Road Construction Equipment</td>
<td>230,727 gallons</td>
<td>49,451 gallons</td>
</tr>
<tr>
<td>Off-Road Construction Equipment</td>
<td>747,950 gallons</td>
<td>160,306 gallons</td>
</tr>
<tr>
<td>Total Diesel</td>
<td>978,539 gallons</td>
<td>209,758 gallons</td>
</tr>
</tbody>
</table>

NOTES: kWh = kilowatt-hours

a Detailed calculations are provided in Appendix G of this Draft EIR.

Electricity

During construction electricity would be supplied to the proposed Project site by LADWP and would be obtained from the existing electrical lines that connect to the proposed Project site. As shown in Table 3.6-1, annual average construction electricity usage would be approximately 55,756 kWh and would be within the supply and infrastructure capabilities of LADWP (forecasted to be 25,445 GWh net energy load in the 2025–2026 fiscal year) (LADWP 2017a). The annual average construction electricity usage of approximately 55,756 kWh is equivalent to approximately five residential units, based on the average annual electricity consumption for a United States residential utility customer in 2020 (USEIA 2020). The electricity demand at any given time would vary throughout the construction period based on the construction activities being performed and would cease upon completion of construction. Electricity use from construction would be short-term, limited to working hours, used for necessary construction-related activities, and represent a small fraction of the proposed Project’s net annual operational electricity. When not in use, electric equipment would be powered off so as to avoid unnecessary energy consumption. Construction of the Education Center and Multi-Purpose Facility would utilize environmentally sustainable materials. Furthermore, the electricity used for off-road light construction equipment would have the co-benefit of reducing construction-related air pollutant and GHG emissions from more traditional construction-related energy in the form of diesel fuel. Therefore, impacts from construction electrical demand would be less than significant and would not result in the wasteful, inefficient, and unnecessary consumption of energy.

5 Los Angeles Department of Water and Power defines its future electricity supplies in terms of sales that will be realized at the meter.
Natural Gas
As stated above, construction activities, including the construction of new buildings and facilities, typically do not involve the consumption of natural gas. Accordingly, natural gas would not be supplied to support proposed Project construction activities; thus, there would be no expected demand generated by construction of the proposed Project. Therefore, the proposed Project would result in no impacts from construction natural gas demand and would not result in the wasteful, inefficient, and unnecessary consumption of energy.

Transportation Energy
Table 3.6-1 reports the estimated amount of petroleum-based transportation energy that is expected to be consumed during proposed Project construction. Energy calculations are provided in Appendix G of this Draft EIR. During proposed Project construction, on- and off-road vehicles would consume an estimated annual average of approximately 19,045 gallons of gasoline and approximately 209,758 gallons of diesel. Proposed Project construction activities would last for approximately 56 months. The fuel usage during proposed Project construction would represent approximately 0.0005 percent of the 2019 annual on-road gasoline-related energy consumption of 3,559,000,000 gallons and 0.037 percent of the 2019 annual diesel fuel-related energy consumption of 563,265,306 gallons in Los Angeles County (CEC 2021a), as shown in Appendix G of this Draft EIR.

Transportation fuels (gasoline and diesel) are produced from crude oil, which can be domestic or imported from various regions around the world. Based on current petroleum production and consumption and future trends, oil production and consumption will grow through 2050 (USEIA 2022). Crude oil supply and utilization in the United States is expected to return to pre-pandemic levels starting in 2023 and stabilize in the long term and therefore would be sufficient to sustain the projected oil consumption through 2050 (USEIA 2022).

Construction of the proposed Project would utilize fuel-efficient equipment consistent with state and federal regulations, such as fuel efficiency regulations in accordance with the CARB Pavley Phase II standards, the anti-idling regulation in accordance with Section 2485 in 13 CCR, and fuel requirements in accordance with 17 CCR Section 93115. The proposed Project would benefit from fuel and automotive manufacturers’ compliance with CAFE standards, which would result in more efficient use of transportation fuels (lower consumption). Further, the Project would source construction materials locally and would reduce the length of truck trips to and from the Project Site therefore conserving diesel fuel use compared to a similar project using globally-sourced materials. As stated in Chapter 2, Project Description, of this Draft EIR, the Project would also be designed with gradients and elevations that would balance the amount of earthwork material so that no off-haul or import of soil would be required. Typical construction projects in urban areas often require the export of earthwork material. Within Los Angeles earthwork material is often exported to landfills such as Sunshine Canyon or other locations in the Azusa

6 While fuel consumptions data for year 2020 is available, year 2019 is used as it represents pre-COVID-19 pandemic conditions. Diesel is adjusted to account for retail (49 percent) and non-retail (51 percent) diesel sales.

7 It is noted that the Draft EIR conservatively assumes export of earthwork for the quantitative assessments (e.g., in air quality, energy, greenhouse gas emissions, noise, and transportation) in order to provide a worst-case analysis if some export of earthwork is required. However, the Project is intended to be designed to balance earthwork material on the site.
and Irwindale areas, necessitating truck travel of approximately 20 to 30 miles or more for a one-way trip. Because the Project is intended to be designed to balance earthwork material on the site and avoid the need to export earthwork materials to these landfill locations, the Project would require fewer gallons of fossil fuels to be consumed for construction transportation, due to the avoidance of earthwork material export compared to more typical urban projects. As such, the proposed Project would indirectly comply with applicable regulatory measures and be designed in a manner to reduce the inefficient, wasteful, and unnecessary consumption of energy, such as petroleum-based transportation fuels. While applicable regulations are intended to reduce construction emissions, compliance with the anti-idling and emissions regulations discussed above would also result in fuel savings from the use of more fuel-efficient engines.

In addition, the proposed Project would divert mixed construction and demolition debris to City-certified construction and demolition waste processors using City-certified waste haulers, consistent with the Los Angeles City Council approved Ordinance No. 181519 (LAMC Chapter VI, Article 6, Section 66.32-66.32.5). Diversion of mixed construction and demolition debris would reduce truck trips to landfills, which are typically located some distance away from City centers, and would increase the amount of waste recovered (e.g., recycled, reused, etc.) at material recovery facilities, thereby further reducing transportation fuel consumption.

Based on the analysis above, construction would utilize energy only for necessary on-site activities and to transport construction materials and demolition debris to and from the proposed Project site. As discussed above, idling restrictions and the use of cleaner, energy-efficient equipment and fuels would minimize the proposed Project’s construction-related energy use. Therefore, construction of the proposed Project would not result in the wasteful, inefficient, and unnecessary consumption of energy and impacts would be considered less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Operation

During operation of the proposed Project, energy would be consumed for multiple purposes, including, but not limited to, on-road mobile sources (i.e., transportation fuel), area sources (i.e., landscape maintenance equipment and natural gas heating), energy (i.e., electricity, water conveyance and wastewater treatment, and solid waste. Usage of these energy sources was calculated for the proposed Project buildout year (2030). Table 3.6-2 summarizes the proposed Project’s annual net new operational energy demand for electricity, natural gas for mobile sources, and gasoline and diesel transportation fuels.
Table 3.6-2
Summary of Annual Net New Energy Use During Proposed Project Operation

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Annual Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td></td>
</tr>
<tr>
<td>Building Energy</td>
<td>774,850 kWh</td>
</tr>
<tr>
<td>Water Conveyance</td>
<td>499,521 kWh</td>
</tr>
<tr>
<td>Total Electricity</td>
<td>1,274,371 kWh</td>
</tr>
<tr>
<td>Natural Gas</td>
<td></td>
</tr>
<tr>
<td>Building Energy</td>
<td>0 cf</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>190,649 cf</td>
</tr>
<tr>
<td>Total Natural Gas</td>
<td>190,649 cf</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>81,952 gallons</td>
</tr>
<tr>
<td>Diesel</td>
<td>14,376 gallons</td>
</tr>
</tbody>
</table>

NOTES: kWh = kilowatt-hours; cf = cubic feet

- a Detailed calculations are provided in Appendix G of this Draft EIR.
- b Totals may not add up exactly due to rounding of decimals.
- c Proposed Project electricity and natural gas estimates for buildings assume compliance with applicable 2019 Title 24 and CALGreen requirements.

Electricity

With compliance with 2019 Title 24 standards and applicable 2019 CALGreen requirements, at buildout, the proposed Project would result in a projected increase in the on-site annual demand for electricity totaling 1,274,371 kWh, as shown in Table 3.6-2. The proposed Project would include building heating, ventilation, and air conditioning (HVAC) systems that would be sized and designed in compliance with the CALGreen Code to maximize energy efficiency caused by heat loss and heat gain; high efficiency, low-e insulated glass units to be used for the recreation center and education center building envelope; glazing to be protected from direct sunlight with deep overhangs and window screening to reduce glare and solar radiation and heat gain; and new and existing tree canopies to be utilized to protect building walls from sun exposure and provide shade for the ground area.\(^8\) These measures were generally accounted for based on compliance with 2019 Title 24 standards.

Further, the Project would optimize natural ventilation and daylighting at the new Education Center and Multi-Purpose Facility which would reduce the amount of electricity needed for lighting and heating/cooling. The Education Center would also include shade trees and architectural features to minimize the heat gain and regulate indoor temperatures without the need for additional electrical capacity. The Project would also improve the energy efficiency of the existing Multi-Purpose Facility and would be updated to meet current building energy and safety codes. The Education Center, updated Recreation Center, and Multi-Purpose Facility would be designed to be all-electric and would eliminate the use of natural gas. While this does result in

\(^8\) Low-e insulated glass refers to low emissivity glass which minimize the amount of ultra-violet and infrared light that can pass through, thereby improving the temperature insulating properties of the glass.
higher electricity usage, it results in more sustainable development by eliminating fossil fuel (i.e. natural gas) use for building energy.

The proposed Project would include strategies to reduce irrigation water demand. The proposed Project would include ornamental garden areas consisting of a combination of native and drought-tolerant species appropriate to the Los Angeles region to provide a plant palette adapted to climate change. Lawn would be used sparingly and strategically distributed where needed to support multifunctional cultural and recreational uses. Irrigation water would be pumped from the reservoirs to the proposed Meadow park zones which would then flow back into the reservoirs. Transition habitat zones would also be irrigated with reservoir water on a separate cycle appropriate for the drought-tolerant, coastal scrub planting palette proposed under the proposed Project. This irrigation strategy would be validated by reservoir water quality testing and soil analysis under proposed operations. Remaining upland habitat, lawn areas, and ornamental gardens would be irrigated via a potable water supply available from the LADWP distribution system which would require a dedicated meter. If recycled water is available in the future, it could be used to irrigate ornamental planting. The Education Center would include a rainwater harvesting system to recycle water and The Meadow would include a series of depressions in the ground which would function as rain collectors. These features would decrease the amount of water needed to maintain the landscaping and would reduce the amount of electricity needed for water conveyance.

LADWP was required to procure at least 33 percent of its energy portfolio from renewable sources by 2020 and LADWP has met this requirement. With the passage of SB 100 in September 2018, LADWP will be required to update its long-term plans to demonstrate compliance including providing 60 percent of its energy portfolio from renewable sources by December 31, 2030, and ultimately planning for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045. LADWP’s current sources include biomass and biowaste, geothermal, eligible hydroelectric, solar, and wind sources. These sources accounted for 34 percent of LADWP’s overall energy mix in 2019, the most recent year for which data are available, and represent the available off-site renewable sources of energy that would meet the proposed Project’s energy demand (CEC 2020).

LADWP generates its load forecast to account for regional economic and population growth based on multiple forms of data from various agencies, including historical sales from the General Accountings Consumption and Earnings report, historical Los Angeles County employment data provided from the state’s Economic Development Division, plug-in electric vehicle (PEV) projections from the CEC account building permits when determining electricity Load Forecasts, solar rooftop installations from the Solar Energy Development Group, electricity price projections from the Financial Services organization, and LADWP program efficiency forecasts (LADWP 2017a). In addition, LADWP considers projected Los Angeles County building permit amounts calculated by the UCLA Anderson School of Management when determining its load forecast and would, therefore, account for the proposed Project’s electricity demand (LADWP 2017a).
Based on LADWP’s collected data in its 2018 Power Strategic Long-Term Resource Plan, LADWP forecasts that its net energy for load in the 2030–2031 fiscal year (the proposed Project’s buildout year) will be 26,360 GWh of electricity (LADWP 2017a). As such, the proposed Project-related net increase in annual electricity consumption of 1,309,123 kWh would represent 0.005 percent of LADWP’s projected sales in 2030 and would be within LADWP’s projected electricity supplies.

As previously described, the proposed Project incorporates a variety of energy and water conservation measures and features that are consistent with and go beyond state and local energy policies to reduce energy usage and minimize energy demand. To meet project objectives of sustainability, several efficiency features would be incorporated into the design of the proposed station, including all-electric development, measures to improve water efficiency (e.g., rainwater collection systems, drought tolerant plants), utilizing recycled material during construction, energy efficiency (e.g., shade trees, natural ventilation), and lighting (e.g., use of natural sunlight, double-glazed and energy-efficient lighting). Specifically, as described in Section 3.18, Utilities and Service Systems, of this Draft EIR, the Project would include PDF-UTIL-1 (Drought-Tolerant Landscaping), which requires that the Project use a mix of native and drought-tolerant plants appropriate to the Los Angeles region to provide a plant palette adapted to climate change. Lawn would be used sparingly and strategically distributed where needed to support multifunctional cultural and recreational uses. The Project would also include PDF-UTIL-2 (Water-Efficient Irrigation), which requires that the Project use irrigation water that will be pumped from the reservoirs to the proposed Meadow park zones which would then flow back into the reservoirs. Transition habitat zones would also be irrigated with reservoir water on a separate cycle appropriate for the drought-tolerant, coastal scrub planting palette. Remaining upland habitat, lawn areas, and ornamental gardens would be irrigated via a potable water supply available from the LADWP distribution system which would require a dedicated meter. Recycled water may also be used to irrigate ornamental planting, should such water supplies become available in the future. Implementation of PDF-UTIL-1 and PDF-UTIL-2 would reduce the Project’s water demand and associated energy needs for water supply, conveyance, distribution and treatment better than regulatory requirements, and thus better than typical projects that only comply with regulatory requirements. As determined in Section 3.18, Utilities and Service Systems, of this Draft EIR, the City’s existing water supplies are expected to be sufficient to serve the proposed buildings and structures, as they would not include water-intensive amenities, or substantial amounts of new employees and visitors that would consume substantial amounts of water. Further, it is determined that the proposed Project would contribute to a beneficial impact on groundwater supplies and that the proposed Project would have sufficient water supplies available to serve the proposed Project and reasonably foreseeable future development during normal, dry, and multiple dry years and that water supply impacts would be less than significant.

Therefore, with the incorporation of the Project's energy and water saving measures and features, operation of the proposed Project would not result in the wasteful, inefficient, or unnecessary consumption of electricity.

9 Los Angeles Department of Water and Power defines its future electricity supplies in terms of sales that will be realized at the meter.
Natural Gas

With compliance with the City of Los Angeles’ Green New Deal, all new municipally-owned buildings and major building renovation projects will utilize electricity instead of natural gas. Accordingly, natural gas would not be supplied to support proposed Project operations activities related to building energy. However, 190,649 cf of natural gas would be used for proposed Project operations activities related to transportation sources (i.e., natural gas-fueled vehicles), as indicated in Table 3.6-2 which is discussed in further detail under Transportation Energy. Therefore, the proposed Project would result in no impacts from operational natural gas demand and would not result in the wasteful, inefficient, and unnecessary consumption of energy.

Transportation Energy

During operation, proposed Project-related traffic would result in the consumption of petroleum-based fuels related to vehicular travel to and from the proposed Project site. A majority of the vehicle fleet that would be used by proposed Project visitors and employees would consist of light-duty automobiles and light-duty trucks, which are subject to fuel efficiency standards. Annual trips for the proposed Project were estimated using trip rates provided in the proposed Project’s TIA included in Appendix K of this Draft EIR (Jano Baghdanian & Associates 2022).10

As shown in Table 3.6-2, the proposed Project’s estimated annual increase in petroleum-based fuel usage would be 190,649 cubic feet of natural gas, 81,952 gallons of gasoline and 14,376 gallons of diesel for transportation sources for the proposed Project. SoCalGas accounts for anticipated regional demand based on various factors, including growth in employment by economic sector, growth in housing and population, and increasingly demanding state goals for reducing GHG emissions. SoCalGas accounts for an increase in employment and housing between 2018 to 2035. Furthermore, the 2020 California Gas Report estimates that natural gas supplies within SoCalGas’ planning area will be 778,180 million cf in 2030 (the proposed Project’s buildout year) (California Gas and Electric Utilities 2020). As stated above, the proposed Project’s annual net increase in demand for natural gas is estimated to be 190,649 cf for transportation sources. The proposed Project would account for 0.00002 percent of the 2030 forecasted annual consumption in SoCalGas’ planning area and would fall within SoCalGas’ anticipated regional demand from population or economic growth. Based on the California Energy Commission’s California Annual Retail Fuel Outlet Report, Los Angeles County consumed 3,559,000,000 gallons of gasoline and 563,265,306 gallons of diesel fuel in 2019 (CEC 2021a). The proposed Project would account for 0.002 percent of County gasoline consumption and 0.003 percent of County diesel consumption based on the available County fuel sales data for the year 2019.

Based on current petroleum production and consumption and future trends, oil production and consumption will grow through 2050 (USEIA 2022). Crude oil supply and utilization in the United States is expected to return to pre-pandemic levels starting in 2023 and stabilize in the long term and therefore would be sufficient to sustain the projected oil consumption through 2050 (USEIA 2022). The proposed Project would benefit from fuel and automotive manufacturers’ compliance with CARB’s Low-Emission Vehicle (LEV-III) Program and CAFE standards, which

10 The Transportation Assessment is provided in Appendix K of this Draft EIR.
would result in more efficient use of transportation fuels (lower consumption). Project-related vehicle trips would also indirectly benefit from Pavley Standards, which are designed to reduce vehicle GHG emissions by mandating increasingly stringent emissions standards on new vehicles but would also result in fuel savings from more efficient engines in addition to compliance with CAFE standards.

Based on the above, the proposed Project would minimize operational transportation fuel demand consistent with state, regional, and City goals. Therefore, operation of the proposed Project would not result in the wasteful, inefficient, and unnecessary consumption of energy.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Construction

As discussed above, electricity would be consumed during proposed Project construction activities. The electricity demand at any given time would vary throughout the construction period based on the construction activities being performed and would cease upon completion of construction. Electricity would be supplied to the proposed Project site by LADWP and would be obtained from the existing electrical lines that connect to the proposed Project site. While temporary power poles would be installed to provide electricity during proposed Project construction, the existing off-site infrastructure would not have to be expanded or newly developed to provide electrical service to the proposed Project site during construction or demolition. Electricity demand during proposed Project construction would be 4.4 percent of the proposed Project’s net annual operational electricity consumption, which would be within the supply and infrastructure capabilities of LADWP and, thus, would not result in an increase in demand for electricity that exceeds available supply or distribution infrastructure capabilities that could result in the construction of new facilities or expansion of existing facilities. Construction activities, including the construction of new buildings and facilities, typically do not involve the consumption of natural gas. Accordingly, natural gas would not be supplied to support proposed Project construction activities; thus, there would be no demand generated by construction. The proposed Project would not result in installation of any new natural gas infrastructure. The Project is subject to the City of Los Angeles’ Green New Deal requirements that include electrification of all new municipally-owned buildings and major building renovations. As stated above, transportation fuel usage during proposed Project construction activities would represent 0.0005 percent of gasoline usage and 0.04 percent of diesel usage within Los Angeles County, respectively. Construction transportation energy would be provided by existing retail service stations and from existing mobile fuel services that are typically needed to deliver fuel to a construction site to refuel the off-road construction equipment at the proposed Project site, and, as such, no new facilities would be required. As energy consumption during construction would not
be substantial, would be temporary and short-term, and as energy supplies of the existing
pursuers are sufficient to serve the Project in addition to existing commitments, the proposed
Project would not affect the local and/or regional energy supplies and would not require
additional capacity. Impacts would be considered less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

Operation

Electricity

Based on LADWP’s 2018 Power Strategic Long-Term Resource Plan, LADWP forecasts that its
net energy for load in the 2030–2031 fiscal year (the proposed Project’s buildout year) will be
26,360 GWh of electricity (LADWP 2017a). The Project-related increase in annual electricity
consumption of 1,309,123 kWh/year would represent 0.005 percent of LADWP’s projected sales
for the 2030–2031 fiscal year and would be consistent with LADWP’s anticipated regional
demand from population or economic growth. During peak conditions, the proposed Project
would represent 0.005 percent of the LADWP estimated peak load. Based on these factors, it is
anticipated that LADWP’s existing and planned electricity capacity and electricity supplies would
be sufficient to serve the proposed Project’s electricity demand, and, thus, the proposed Project
would not require additional infrastructure (i.e., a substation) beyond the aforementioned
proposed utilities installed on-site during construction.

Natural Gas

As stated above, the proposed Project would not include natural gas supply infrastructure for the
Project buildings. Project buildings would use exclusively electricity for building power needs.
The estimated 190,649 cf of natural gas shown in Table 3.6-2 would be utilized for transportation
sources (i.e., natural gas-fueled vehicles). Based on the 2020 California Gas Report, the
California Energy and Electric Utilities estimates that natural gas consumption within SoCalGas’
planning area will be 778,180 million cf in 2030 (the proposed Project’s buildout year)
(California Gas and Electric Utilities 2020). This report predicts gas demand for all sectors
(residential, commercial, industrial, energy generation and wholesale exports) and presents best
estimates, as well as scenarios for hot and cold years. The proposed Project would account for
0.00002 percent of the 2030 forecasted consumption in SoCalGas’ planning area and would fall
within SoCalGas’ projected consumption and supplies for the area. SoCalGas expects overall
natural gas demand to decline through 2035, even accounting for population and economic
growth, with efficiency improvements and the state’s transition away from fossil fuel-generated
electricity to increased renewable energy. The 2020 California Gas Report states, “SoCalGas
projects total gas demand to decline at an annual rate of 1.0 percent per year from 2020 to 2035
(California Gas and Electric Utilities 2020). The decline in throughput demand is due to modest
growth in the natural gas vehicle market and across-the-board declines in other market segments.”

11 Los Angeles Department of Water and Power defines its future electricity supplies in terms of sales that will be
realized at the meter.
As such, SoCalGas’ existing and planned natural gas capacity, supplies and infrastructure would be sufficient to serve the proposed Project’s demand.

Transportation Energy

As stated above, at buildout, the proposed Project would consume a net increase of 190,649 cubic feet of natural gas, 81,952 gallons of gasoline and 14,376 gallons of diesel per year. The transportation-related fuel usage for the proposed Project would represent 0.00002 percent of SoCalGas’ 2030 forecasted consumption, 0.002 percent of the 2019 annual on-road gasoline-, and 0.003 percent of the 2019 annual on-road diesel-related energy consumption in Los Angeles County (based on the available County fuel sales data). Detailed calculations are shown in in Appendix G of this Draft EIR.

Operational transportation energy would be provided by existing retail service stations, and, as such, no new retail service stations would be required. Based on current petroleum production and consumption and future trends, oil production and consumption will grow through 2050 (USEIA 2022). Crude oil supply and utilization in the United States is expected to return to pre-pandemic levels starting in 2023 and stabilize in the long term and therefore would be sufficient to sustain the projected oil consumption through 2050 (USEIA 2022). As such, existing and planned transportation fuel supplies would be sufficient to serve the proposed Project’s demand. As energy consumption during operation would be relatively negligible and within existing and planned supplies, the proposed Project would not affect the local and/or regional energy supplies and would not require additional capacity. No impact would occur.

Mitigation Measures:

None Required

Significance Determination:

No Impact

c) The effects of the proposed Project on peak and base period demands for electricity and other forms of energy

Construction / Operation

As discussed above, electricity demand during construction and operation of the proposed Project would have a negligible effect on the overall capacity of the LADWP’s power grid and base load conditions and would be consistent with expected levels of electricity demand. With regard to peak load conditions, the LADWP power system experienced an all-time high peak of 6,502 MW on August 31, 2017 (LADWP 2017a). LADWP also estimates a peak load based on two years of data known as base case peak demand to account for typical peak conditions. LADWP’s peak demand forecast accounts for a growth rate of 0.4 percent over the next ten years (approximately 30 MW per year) (LADWP 2017a). Based on LADWP estimates for 2030–2031 (closest forecasted year to first project operational year), the base case peak demand for the power grid is 6,183 MW (LADWP 2017a). Under peak conditions, the proposed Project would consume a net increase of 1,274,371 kWh on an annual basis which, assuming 12 hours of active electricity demand per day, would be equivalent to 291 kW (peak demand assuming 4,380 hours per year of
active electricity demand).12 In comparison to the LADWP power grid base peak load of 6,183 MW for 2030–2031, based on the assumption above, the proposed Project would represent 0.005 percent of the LADWP base peak load conditions and, therefore, would not create any new peak demand impacts that are inconsistent with LADWP demand projections.13 In addition, as noted above, LADWP’s peak demand forecast accounts for a growth rate of 0.4 percent over the next ten years. Therefore, the proposed Project’s electrical consumption during operational activities would have a negligible effect on peak load conditions of the power grid and is within existing and planned demand. Impacts would be considered less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

d) The effects of the proposed Project on energy resources

Construction / Operation
As discussed above, LADWP’s electricity generation is derived from a mix of non-renewable and renewable sources, such as coal, natural gas, solar, geothermal wind and hydropower. The LADWP 2018 Power Strategic Long-Term Resource Plan identifies adequate energy resources to support future generation capacity, and, as discussed above, LADWP’s existing and planned electricity capacity and supplies would be sufficient to serve the proposed Project’s electricity demand (LADWP 2017a). As discussed above in the Regulatory Framework, one of the objectives of SB 350 was to increase the procurement of California’s electricity from renewable sources from 33 percent to 50 percent by 2030. Accordingly, LADWP is required to procure at least 33 percent to 50 percent of its energy portfolio from renewable sources by 2030. LADWP has met its 2020 requirement. The current sources of LADWP’s renewable energy include biomass and biowaste, geothermal, eligible hydroelectric, solar, and wind sources. These sources account for 34 percent of LADWP’s overall energy mix in 2019, which is the most recent year for which data are available (CEC 2020). LADWP has committed to providing an increasing percentage of its energy portfolio from renewable sources so as to exceed the RPS requirements. Prior to the passage of SB 100 in September 2018, LADWP committed to exceeding the then-current RPS requirements by increasing to 50 percent by 2025, 55 percent by 2030, and 65 percent by 2036 (LADWP 2017a). With the passage of SB 100, LADWP will be required to update its long-term plans to demonstrate compliance with the updated requirements including providing 60 percent of its energy portfolio from renewable sources by December 31, 2030 and ultimately planning for 100 percent eligible renewable energy resources and zero-carbon resources by December 31, 2045. This represents the available off-site renewable sources of energy that would meet the proposed Project’s energy demand.

12 Calculated as follows: 1,274,371 kWh / 4,380 hours = 291 kW.

13 Calculated as follows: 291 kW / 6,183,000 kW = 0.005 percent.
With regard to on-site renewable energy sources, the proposed Project would meet the applicable requirements of the Los Angeles Green Building Code and the CALGreen Code.

As discussed above, natural gas supplied to the Southern California area is mainly sourced from out-of-state with a small portion originating in California. According to the U.S. Energy Information Administration (EIA), the U.S. currently has approximately 90 years of natural gas reserves based on 2016 consumption (USEIA 2018). Compliance with energy standards is expected to result in more efficient use of natural gas (lower consumption) in future years (CEC 2018). Therefore, as the proposed Project would comply with energy efficiency standards for natural gas, proposed Project construction and operation activities would have a negligible effect on natural gas supply.

As stated earlier, transportation fuels (gasoline and diesel) are produced from crude oil, which can be provided domestically or imported from various regions around the world. Based on current proven reserves, crude oil production would be sufficient to meet over 50 years of worldwide consumption (BP Global 2018). Therefore, proposed Project construction and operation activities would have a negligible effect on the transportation fuel supply.

Based on the above, the proposed Project would minimize construction and operational energy and transportation fuel demand to the extent feasible and would not substantially impact energy resources. Therefore, construction and operation of the proposed Project would not have a significant impact on energy resources.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

e) The proposed Project’s projected transportation energy use requirements and its overall use of efficient transportation alternatives

Construction / Operation
As discussed in Section 3.8, *Greenhouse Gas Emissions*, of this Draft EIR, the SCAG 2020–2045 RTP/SCS presents the transportation vision for the region through the year 2045 and provides a long-term investment framework for addressing the region’s transportation and related challenges. The proposed Project is a recreational land use development located within an established residential community served by existing public transportation options. The proposed Project site is located near the Los Angeles County Metropolitan Transit Authority (Metro) Line 201 that runs West Silver Lake Drive with multiple stops adjacent to the proposed Project site and Line 92 which runs on Glendale Boulevard with multiple stops that are a short walking distance from the proposed Project site. The proposed Project would support pedestrian activity by providing various trails and providing park amenities for the community. The proposed Project site’s location within an existing residential community would be consistent with and would not conflict with SCAG’s land use types for the area and would encourage pedestrian activity, which
would result in a reduction in overall VMT (refer to the detailed VMT analysis provided in Section 3.8, *Greenhouse Gas Emissions*, and Section 3.16, *Transportation*, of this Draft EIR).

As a result, operation of the proposed Project would encourage reduced transportation energy and provide proposed Project visitors and employees with multiple convenient alternative transportation options. Therefore, the proposed Project encourages the use of efficient transportation energy use and efficient transportation alternatives.

Mitigation Measures:
None Required

Significance Determination:
No Impact

f) The degree to which the project design and/or operations incorporate energy-conservation measures, particularly those that go beyond City requirements.

Construction / Operation

The Project includes construction of the Education Center and Multi-Purpose Facility, which will meet the City’s forward-thinking sustainability goals by utilizing sustainably sourced materials, and using LEED to assess the projects. The LEED assessment of the sourcing of construction materials would reduce the length of truck trips to and from the Project Site thereby conserving diesel fuel use compared to materials sourced from a long distance. As stated in Chapter 2, *Project Description*, of this Draft EIR, the Project would also be designed with grade levels and elevations that would attempt to balance the amount of earthwork material so that little or no off-haul or import of soil would be required, as feasible.14 Typical construction projects in urban areas often require the export of earthwork material. Within Los Angeles earthwork material is often exported to landfills such as Sunshine Canyon or other locations in the Azusa and Irwindale areas, necessitating truck travel of approximately 20 to 30 miles or more for a one-way trip. Because the Project is intended to be designed to balance earthwork material on the site and avoid the need to export earthwork materials to these landfill locations, as feasible, the Project would require fewer gallons of fossil fuels to be consumed for construction transportation, due to the avoidance of earthwork material export compared to more typical urban projects. As such, the proposed Project would incorporate construction designs that would reduce transportation fuel demand beyond City requirements.

With respect to operations, the Project would incorporate a variety of energy and water conservation measures and features that are consistent with and go beyond state and local energy policies to reduce energy usage and minimize energy demand. To meet project objectives of sustainability, several efficiency features would be incorporated into the design of the proposed Project, including measures to improve water efficiency (e.g., rainwater collection systems, drought-tolerant plants), utilizing sustainably sourced materials during construction, energy...
efficiency (e.g., shade trees, overhangs, natural ventilation), and lighting (e.g., use of natural sunlight, double-glazed and energy-efficient lighting). As described in Section 3.18, Utilities and Service Systems, of this Draft EIR, the Project would include PDF-UTIL-1 (Drought-Tolerant Landscaping), which requires that Project use a mix of native and drought-tolerant plants appropriate to the Los Angeles region to provide a plant palette adapted to climate change. The Project would also include PDF-UTIL-2 (Water-Efficient Irrigation), which requires that the Project use irrigation water that will be pumped from the reservoirs to the proposed Meadow park zones which would then flow back into the reservoirs. Transition habitat zones would also be irrigated with reservoir water on a separate cycle appropriate for the drought-tolerant, coastal scrub planting palette. Remaining upland habitat, lawn areas, and ornamental gardens would be irrigated via a potable water supply available from the LADWP distribution system which would require a dedicated meter. Recycled water may also be used to irrigate ornamental planting, should such water supplies become available in the future. Implementation of PDF-UTIL-1 and PDF-UTIL-2 would reduce the Project’s water demand and associated energy needs for water supply, conveyance, distribution and treatment better than regulatory requirements.

With respect to Project operational transportation energy demand, the Project would represent an urban infill recreational development, since it would be undertaken in an existing urban area within an established residential community at a location served by several local and regional bus lines. Existing transit options serving the Project include Metro’s Line 201 that runs West Silver Lake Drive with multiple stops adjacent to the SLRC and 92 which runs on Glendale Boulevard with multiple stops which are a short walking distance from the Complex and Metro Line 92 which runs on Glendale Boulevard with multiple stops which are a short walking distance from the Project. In addition, as described in Section 2.5.7, Sustainability Design Features, although the Project is not required to provide any bicycle parking spaces per the LAMC, the Project would also provide on-site bicycle parking spaces and improve existing bike lanes along Silver Lake Boulevard, and the proposed Project would provide drop-off space for micro-mobility initiatives such as Metro Micro (see Section 2.0, Project Description, for additional details). The Project would provide visitors and employees with the ability to access nearby public transit and opportunities for walking and biking, which would facilitate a reduction in VMT. Additional detailed information regarding these land use characteristics are provided in Section 3.8, Greenhouse Gas Emissions, of this Draft EIR. As such, the Project includes transportation features beyond City requirements.

In summary, the proposed Project includes Project Design Features and other design considerations that would reduce energy use beyond City requirements and impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact
State and Local Plans

Impact 3.6-2: Would the proposed Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Construction

As discussed below, the proposed Project would not conflict with or obstruct a state or local plan for renewable energy or energy efficiency. With respect to truck fleet operators, the USEPA and NHSTA have adopted fuel efficiency standards for medium- and heavy-duty trucks. The Phase 1 heavy-duty truck standards apply to combination tractors, heavy-duty pickup trucks and vans, and vocational vehicles and are phased in for model years 2014 through 2018 and result in a reduction in fuel consumption from 6 to 23 percent over the 2010 baseline, depending on the vehicle type (USEPA 2011). USEPA and NHTSA also adopted the Phase 2 heavy-duty truck standards, which would be phased in from model years 2021 through 2027 and require the phase-in of a 5 to 25 percent reduction in fuel consumption over the 2017 baseline depending on the compliance year and vehicle type (USEPA 2016). The energy modeling for trucks does not take into account specific fuel reductions from these regulations, since they would apply to fleets as they incorporate newer trucks meeting the regulatory standards; however, these regulations would have an overall beneficial effect on reducing fuel consumption from trucks over time as older trucks are replaced with newer models that meet the standards.

In addition, construction equipment and trucks are required to comply with CARB regulations regarding heavy-duty truck idling limits of five minutes at a location and the phase-in of off-road emission standards that result in an increase in energy savings in the form of reduced fuel consumption from more fuel-efficient engines. Although these regulations are intended to reduce criteria pollutant emissions, compliance with the anti-idling and emissions regulations would also result in the efficient use of construction-related energy.

Operation of the proposed Project would support statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles for the reasons provided below. The proposed Project would not conflict with the 2020–2045 RTP/SCS goals and benefits intended to improve mobility and access to diverse destinations, provide better “placemaking,” provide more transportation choices, and reduce vehicular demand and associated emissions. The proposed Project is a recreational land use development located within an established residential community with existing public transportation options. The proposed Project site is located near the Los Angeles County Metropolitan Transit Authority (Metro) Line 201 that runs West Silver Lake Drive with multiple stops adjacent to the proposed Project site and Line 92 which runs on Glendale Boulevard with multiple stops that are a short walking distance from the proposed Project site. By locating the proposed Project’s proposed recreational land uses within an existing residential community that is served by existing public transportation options, and by including features that support and encourage pedestrian activity and other non-vehicular transportation, the proposed Project would reduce vehicle trips and VMT (refer to the detailed VMT analysis provided in Section 3.8, Greenhouse Gas Emissions, and Section 3.16, Transportation, of this Draft EIR). Therefore, the Project would be consistent with and would not conflict with SCAG’s land use types for the area and would encourage pedestrian activity.
Based on the above, proposed Project construction activities would not conflict with energy conservation plans and impacts would be less than significant.

Mitigation Measures:
None Required

Significance Determination:
Less than Significant Impact

Operation
A detailed discussion of the proposed Project’s comparison with the applicable actions and strategies in the L.A.’s Green New Deal is provided in Section 3.8, Greenhouse Gas Emissions. As discussed, the proposed Project is designed in a manner that is consistent with and not in conflict with relevant energy conservation plans that are intended to encourage development that results in the efficient use of energy resources. The proposed Project would comply with applicable regulatory requirements for the design of new buildings, including the provisions set forth in the Title 24 standards and CALGreen Code, which have been incorporated into the City’s Green Building Code as amended by the City, to be more stringent than state requirements in LAMC Chapter 9, Article 9 (Green Building Code).

Electricity usage during proposed Project operations, as presented in Table 3.6-2, would be minimized through incorporation of applicable 2019 Title 24 standards, applicable 2019 CALGreen requirements, the Los Angeles Green Building Code, and the Los Angeles Green New Deal.

The proposed Project would also be consistent with and not conflict with regional planning strategies that address energy conservation. As discussed above and in Section 3.8, Greenhouse Gas Emissions, of this Draft EIR, SCAG’s 2020–2045 RTP/SCS focuses on creating livable communities with an emphasis on sustainability and integrated planning, and identifies mobility, economy, and sustainability as the three principles most critical to the future of the region. As part of the approach, the 2020–2045 RTP/SCS focus on reducing fossil fuel use by decreasing VMT and encouraging alternative modes of transit. The proposed Project is a recreational land use development located within an established residential community with existing public transportation options. By locating the proposed Project’s proposed recreational land uses within an existing residential community that is served by existing public transportation options, and by including features that support and encourage pedestrian activity and other non-vehicular transportation, the proposed Project would reduce vehicle trips and VMT. Additional detailed information regarding these land use characteristics are provided in Section 3.3, Air Quality, and Section 3.8, Greenhouse Gas Emissions, of this Draft EIR. With respect to operational transportation-related fuel usage, the proposed Project would support statewide efforts to improve transportation energy efficiency and reduce transportation energy consumption with respect to private automobiles. The proposed Project would also benefit from fuel and automotive manufacturers’ compliance with CAFE fuel economy standards and the Pavley Standards, which are designed to result in more efficient use of transportation fuels.
As stated above, the proposed Project would include strategies to reduce irrigation water demand and recycled water is available in the future, it could be used to irrigate ornamental planting. As a result, the proposed Project would implement project design features and incorporate water conservation, energy conservation, landscaping, and other features consistent with applicable actions and strategies in the L.A.’s Green New Deal, including features that go beyond those specified by regulations, such as the City’s Green Building Code. The proposed Project’s design would comply with existing energy standards and incorporate project design features to reduce energy consumption. Therefore, the proposed Project would not conflict with energy conservation plans and impacts would be less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

Cumulative Impact

Impact 3.6-3: Would the proposed Project construction and operation, when considered with related projects in the geographic scope, result in a cumulatively impact to energy?

As presented in Table 3-2, the City has identified 13 related projects located within the vicinity of the proposed Project site. The geographic context for the analysis of cumulative impacts on electricity is LADWP’s service area, and the geographic context for the analysis of cumulative impacts on natural gas in SoCalGas’ service area, because the proposed Project and related projects are located within the service boundaries of LADWP and SoCalGas. While the geographic context for transportation-related energy use is more difficult to define, the City has determined to consider the proposed Project in the context of County-wide consumption given the tendency for vehicles to travel within and through the County and the availability of County-level data. Growth within these geographies is anticipated to increase the demand for electricity, natural gas, and transportation energy, as well as the need for energy infrastructure, such as new or expanded energy facilities.

Electricity

Buildout of the proposed Project, related projects, and additional forecasted growth in LADWP’s service area would cumulatively increase the demand for electricity supplies and on infrastructure capacity. However, LADWP, in coordination with the CEC, account for future increases in service area demand based on various economic, population, and efficiency factors. LADWP relies on multiple forms of data from various agencies, including historical sales from the General Accountings Consumption and Earnings report, historical Los Angeles County employment data provided from the state’s Economic Development Division, PEV projections from the CEC account building permits when determining electricity Load Forecasts, solar rooftop installations from the Solar Energy Development Group, electricity price projections from the Financial Services organization, and LADWP program efficiency forecasts (LADWP 2017a). As described in LADWP’s 2017 Power Strategic Long-Term Resource Plan, LADWP would continue to expand delivery capacity as needed to meet demand increases within its service area at the lowest
cost and risk consistent with LADWP’s environmental priorities and reliability standards (LADWP 2017a). The 2017 Power Strategic Long-Term Resource Plan takes into account future energy demand, advances in renewable energy resources and technology, energy efficiency, conservation, and forecast changes in regulatory requirements (LADWP 2017a). Accordingly, LADWP considers projected Los Angeles County building permit amounts calculated by the UCLA Anderson School of Management when determining its load forecast and would, therefore, account for the proposed Project’s and the related projects’ electricity demand within its forecasts (LADWP 2017a). Thus, LADWP considers growth from related projects within its service area for the increase in demand for electricity, as well as the need for energy infrastructure, such as new or expanded energy facilities.

LADWP has achieved its goal of procuring a minimum of 33 percent of its energy portfolio from eligible renewables sources by 2020. LADWP’s current sources of renewable energy include biomass and biowaste, geothermal, eligible hydroelectric, solar and wind, and accounted for 34 percent of LADWP’s overall energy mix, the most recent year for which data are available (CEC 2020). Therefore, the energy use of the proposed Project and related projects would benefit from LADWP’s energy conservation plans and efficiency standards. The proposed Project would not increase energy use beyond regional demand estimates and would not contribute considerably to cumulative increases in energy demand or inefficient uses. When considered together with related projects, the proposed Project would not contribute considerably to planned energy demands. The cumulative impact would be less than significant.

Natural Gas

Based on the 2020 California Gas Report, the CEC estimates natural gas consumption within SoCalGas’ planning area will be approximately 778,180 million cubic feet in 2030 (the proposed Project’s buildout year) (California Gas and Electric Utilities 2020). The proposed Project would account for 0.00002 percent of the 2030 forecasted consumption in SoCalGas’ planning area. The Project’s contribution to natural gas consumption would come from solely from mobile sources in the form of natural gas-powered vehicles. Project buildings are required to be all-electric pursuant to the City of Los Angeles’ Green New Deal. As a result, the proposed Project would not contribute considerably to cumulative natural gas demands. SoCalGas forecasts consider projected population growth and development based on local and regional plans, and the proposed Project’s growth and development would not conflict with those projections. Cumulative impacts would be less than significant.

Transportation Energy

Buildout of the proposed Project, related projects, and additional forecasted growth would cumulatively increase the demand for transportation-related fuel in the state and region. As described above, at buildout, the proposed Project would consume a total net increase of 190,649 cubic feet of natural gas for mobile sources, 81,952 gallons of gasoline and 14,376 gallons of diesel per year. The transportation-related fuel usage for the proposed Project would represent 0.00002 percent of the 2030 forecasted consumption in SoCalGas’ planning area, 0.002 percent of the 2019 annual on-road gasoline- and 0.003 percent of the annual on-road diesel-related energy consumption in Los Angeles County (based on the available County fuel sales data), as
shown in Appendix G of this Draft EIR. As a result, the proposed Project would not contribute considerably to the cumulative gasoline demands.

Petroleum currently accounts for 90 percent of California’s transportation energy sources; however, over the last decade the state has implemented several policies, rules, and regulations to improve vehicle efficiency, increase the development and use of alternative fuels, reduce air pollutants and GHGs from the transportation sector, and reduce VMT, which would reduce reliance on petroleum fuels.

The proposed Project would not conflict with the energy efficiency policies emphasized by the 2020–2045 RTP/SCS. The proposed Project would be consistent with and not conflict with SCAG’s land use type for the area and would encourage alternative transportation and a reduction in overall VMT. The proposed Project is a recreational land use development located within an established residential community with existing public transportation options. The proposed Project site is located near the Los Angeles County Metropolitan Transit Authority (Metro) Line 201 that runs West Silver Lake Drive with multiple stops adjacent to the proposed Project site and Line 92 which runs on Glendale Boulevard with multiple stops that are a short walking distance from the proposed Project site. By locating the proposed Project’s proposed recreational land uses within an existing residential community that is served by existing public transportation options, and by including features that support and encourage pedestrian activity and other non-vehicular transportation, the proposed Project would reduce vehicle trips and VMT. Since the proposed Project would not conflict with the 2020–2045 RTP/SCS, the proposed Project’s contribution to cumulative impacts due to wasteful, inefficient or unnecessary use of transportation fuel would not be cumulatively considerable, and, thus, cumulative impacts would be less than significant.

The proposed Project’s contribution to cumulative impacts related to energy consumption (i.e., electricity, natural gas, and transportation energy) would not result in a cumulatively considerable effect related to potentially significant environmental impacts due to the wasteful, inefficient and unnecessary consumption of energy during construction or operation. As such, cumulative energy impacts would be less than significant.

Mitigation Measures:

None Required

Significance Determination:

Less than Significant Impact

3.6.6 Summary of Impacts

Table 3.6-3 summarizes the impact significance determinations and lists mitigation measures related to energy.
3.6 Energy

Table 3.6-3
Summary of Proposed Project Impacts to Energy

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measure</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6-1: Consumption of Energy Resources</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.6-2: State and Local Plans</td>
<td>None Required</td>
<td>LTS</td>
</tr>
<tr>
<td>3.6-3: Cumulative</td>
<td>None Required</td>
<td>LTS</td>
</tr>
</tbody>
</table>

NOTES: NI = No Impact, no mitigation proposed; LTS = Less than Significant, no mitigation proposed; LTSM = Less than Significant Impact with Mitigation Incorporated; SU = Significant and Unavoidable

3.6.7 References

Jano Baghdanian & Associates, 2022. Transportation Impact Assessment – Silver Lake Reservoir Complex Master Plan Environmental Impact Report. The Transportation Assessment is provided in Appendix J of this Draft EIR.

